Cargando…

Algorithms with Area under the Curve for Daily Urinary Estrone-3-Glucuronide and Pregnanediol-3-Glucuronide to Signal the Transition to the Luteal Phase

Background and Objectives: Home fertility assessment methods (FAMs) for natural family planning (NFP) have technically evolved with the objective metrics of urinary luteinizing hormone (LH), estrone-3-glucuronide (E3G) and pregnanediol-3-glucuronide (PDG). Practical and reliable algorithms for timin...

Descripción completa

Detalles Bibliográficos
Autores principales: Usala, Stephen J., Alliende, María Elena, Trindade, A. Alexandre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781682/
https://www.ncbi.nlm.nih.gov/pubmed/35056427
http://dx.doi.org/10.3390/medicina58010119
Descripción
Sumario:Background and Objectives: Home fertility assessment methods (FAMs) for natural family planning (NFP) have technically evolved with the objective metrics of urinary luteinizing hormone (LH), estrone-3-glucuronide (E3G) and pregnanediol-3-glucuronide (PDG). Practical and reliable algorithms for timing the phase of cycle based upon E3G and PDG levels are mostly unpublished and still lacking. Materials and Methods: A novel formulation to signal the transition to the luteal phase was discovered, tested, and developed with a data set of daily E3G and PDG levels from 25 women, 78 cycles, indexed to putative ovulation (day after the urinary LH surge), Day 0. The algorithm is based upon a daily relative progressive change in the ratio, E3G-AUC/PDG-AUC, where E3G-AUC and PDG-AUC are the area under the curve for E3G and PDG, respectively. To improve accuracy the algorithm incorporated a three-fold cycle-specific increase of PDG. Results: An extended negative change in E3G-AUC/PDG-AUC of at least nine consecutive days provided a strong signal for timing the luteal phase. The algorithm correctly identified the luteal transition interval in 78/78 cycles and predicted the start day of the safe period as: Day + 2 in 10/78 cycles, Day + 3 in 21/78 cycles, Day + 4 in 28/78 cycles, Day + 5 in 15/78 cycles, and Day + 6 in 4/78 cycles. The mean number of safe luteal days with this algorithm was 10.3 ± 1.3 (SD). Conclusions: An algorithm based upon the ratio of the area under the curve for daily E3G and PDG levels along with a relative PDG increase offers another approach to time the phase of cycle. This may have applications for NFP/FAMs and clinical evaluation of ovarian function.