Cargando…
Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis
Alcoholic hepatitis is a major health care burden in the United States due to significant morbidity and mortality. Early identification of patients with alcoholic hepatitis at greatest risk of death is extremely important for proper treatments and interventions to be instituted. In this study, we us...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781791/ https://www.ncbi.nlm.nih.gov/pubmed/35050163 http://dx.doi.org/10.3390/metabo12010041 |
_version_ | 1784638164169654272 |
---|---|
author | Gao, Bei Wu, Tsung-Chin Lang, Sonja Jiang, Lu Duan, Yi Fouts, Derrick E. Zhang, Xinlian Tu, Xin-Ming Schnabl, Bernd |
author_facet | Gao, Bei Wu, Tsung-Chin Lang, Sonja Jiang, Lu Duan, Yi Fouts, Derrick E. Zhang, Xinlian Tu, Xin-Ming Schnabl, Bernd |
author_sort | Gao, Bei |
collection | PubMed |
description | Alcoholic hepatitis is a major health care burden in the United States due to significant morbidity and mortality. Early identification of patients with alcoholic hepatitis at greatest risk of death is extremely important for proper treatments and interventions to be instituted. In this study, we used gradient boosting, random forest, support vector machine and logistic regression analysis of laboratory parameters, fecal bacterial microbiota, fecal mycobiota, fecal virome, serum metabolome and serum lipidome to predict mortality in patients with alcoholic hepatitis. Gradient boosting achieved the highest AUC of 0.87 for both 30-day mortality prediction using the bacteria and metabolic pathways dataset and 90-day mortality prediction using the fungi dataset, which showed better performance than the currently used model for end-stage liver disease (MELD) score. |
format | Online Article Text |
id | pubmed-8781791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87817912022-01-22 Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis Gao, Bei Wu, Tsung-Chin Lang, Sonja Jiang, Lu Duan, Yi Fouts, Derrick E. Zhang, Xinlian Tu, Xin-Ming Schnabl, Bernd Metabolites Article Alcoholic hepatitis is a major health care burden in the United States due to significant morbidity and mortality. Early identification of patients with alcoholic hepatitis at greatest risk of death is extremely important for proper treatments and interventions to be instituted. In this study, we used gradient boosting, random forest, support vector machine and logistic regression analysis of laboratory parameters, fecal bacterial microbiota, fecal mycobiota, fecal virome, serum metabolome and serum lipidome to predict mortality in patients with alcoholic hepatitis. Gradient boosting achieved the highest AUC of 0.87 for both 30-day mortality prediction using the bacteria and metabolic pathways dataset and 90-day mortality prediction using the fungi dataset, which showed better performance than the currently used model for end-stage liver disease (MELD) score. MDPI 2022-01-05 /pmc/articles/PMC8781791/ /pubmed/35050163 http://dx.doi.org/10.3390/metabo12010041 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gao, Bei Wu, Tsung-Chin Lang, Sonja Jiang, Lu Duan, Yi Fouts, Derrick E. Zhang, Xinlian Tu, Xin-Ming Schnabl, Bernd Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis |
title | Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis |
title_full | Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis |
title_fullStr | Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis |
title_full_unstemmed | Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis |
title_short | Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis |
title_sort | machine learning applied to omics datasets predicts mortality in patients with alcoholic hepatitis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781791/ https://www.ncbi.nlm.nih.gov/pubmed/35050163 http://dx.doi.org/10.3390/metabo12010041 |
work_keys_str_mv | AT gaobei machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis AT wutsungchin machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis AT langsonja machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis AT jianglu machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis AT duanyi machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis AT foutsderricke machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis AT zhangxinlian machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis AT tuxinming machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis AT schnablbernd machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis |