Cargando…

Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis

Alcoholic hepatitis is a major health care burden in the United States due to significant morbidity and mortality. Early identification of patients with alcoholic hepatitis at greatest risk of death is extremely important for proper treatments and interventions to be instituted. In this study, we us...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Bei, Wu, Tsung-Chin, Lang, Sonja, Jiang, Lu, Duan, Yi, Fouts, Derrick E., Zhang, Xinlian, Tu, Xin-Ming, Schnabl, Bernd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781791/
https://www.ncbi.nlm.nih.gov/pubmed/35050163
http://dx.doi.org/10.3390/metabo12010041
_version_ 1784638164169654272
author Gao, Bei
Wu, Tsung-Chin
Lang, Sonja
Jiang, Lu
Duan, Yi
Fouts, Derrick E.
Zhang, Xinlian
Tu, Xin-Ming
Schnabl, Bernd
author_facet Gao, Bei
Wu, Tsung-Chin
Lang, Sonja
Jiang, Lu
Duan, Yi
Fouts, Derrick E.
Zhang, Xinlian
Tu, Xin-Ming
Schnabl, Bernd
author_sort Gao, Bei
collection PubMed
description Alcoholic hepatitis is a major health care burden in the United States due to significant morbidity and mortality. Early identification of patients with alcoholic hepatitis at greatest risk of death is extremely important for proper treatments and interventions to be instituted. In this study, we used gradient boosting, random forest, support vector machine and logistic regression analysis of laboratory parameters, fecal bacterial microbiota, fecal mycobiota, fecal virome, serum metabolome and serum lipidome to predict mortality in patients with alcoholic hepatitis. Gradient boosting achieved the highest AUC of 0.87 for both 30-day mortality prediction using the bacteria and metabolic pathways dataset and 90-day mortality prediction using the fungi dataset, which showed better performance than the currently used model for end-stage liver disease (MELD) score.
format Online
Article
Text
id pubmed-8781791
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87817912022-01-22 Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis Gao, Bei Wu, Tsung-Chin Lang, Sonja Jiang, Lu Duan, Yi Fouts, Derrick E. Zhang, Xinlian Tu, Xin-Ming Schnabl, Bernd Metabolites Article Alcoholic hepatitis is a major health care burden in the United States due to significant morbidity and mortality. Early identification of patients with alcoholic hepatitis at greatest risk of death is extremely important for proper treatments and interventions to be instituted. In this study, we used gradient boosting, random forest, support vector machine and logistic regression analysis of laboratory parameters, fecal bacterial microbiota, fecal mycobiota, fecal virome, serum metabolome and serum lipidome to predict mortality in patients with alcoholic hepatitis. Gradient boosting achieved the highest AUC of 0.87 for both 30-day mortality prediction using the bacteria and metabolic pathways dataset and 90-day mortality prediction using the fungi dataset, which showed better performance than the currently used model for end-stage liver disease (MELD) score. MDPI 2022-01-05 /pmc/articles/PMC8781791/ /pubmed/35050163 http://dx.doi.org/10.3390/metabo12010041 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gao, Bei
Wu, Tsung-Chin
Lang, Sonja
Jiang, Lu
Duan, Yi
Fouts, Derrick E.
Zhang, Xinlian
Tu, Xin-Ming
Schnabl, Bernd
Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis
title Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis
title_full Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis
title_fullStr Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis
title_full_unstemmed Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis
title_short Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis
title_sort machine learning applied to omics datasets predicts mortality in patients with alcoholic hepatitis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781791/
https://www.ncbi.nlm.nih.gov/pubmed/35050163
http://dx.doi.org/10.3390/metabo12010041
work_keys_str_mv AT gaobei machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis
AT wutsungchin machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis
AT langsonja machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis
AT jianglu machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis
AT duanyi machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis
AT foutsderricke machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis
AT zhangxinlian machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis
AT tuxinming machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis
AT schnablbernd machinelearningappliedtoomicsdatasetspredictsmortalityinpatientswithalcoholichepatitis