Cargando…
Sleep Apnea Detection Based on Multi-Scale Residual Network
Aiming at the fact that traditional convolutional neural networks cannot effectively extract signal features in complex application scenarios, a sleep apnea (SA) detection method based on multi-scale residual networks is proposed. First, we analyze the physiological mechanism of SA, which uses the R...
Autores principales: | Fang, Hengyang, Lu, Changhua, Hong, Feng, Jiang, Weiwei, Wang, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781811/ https://www.ncbi.nlm.nih.gov/pubmed/35054512 http://dx.doi.org/10.3390/life12010119 |
Ejemplares similares
-
Detection of Sleep Apnea from Single-Lead ECG Signal Using a Time Window Artificial Neural Network
por: Wang, Tao, et al.
Publicado: (2019) -
Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network
por: Wang, Tao, et al.
Publicado: (2019) -
Deep Learning for Diagnosis and Classification of Obstructive Sleep Apnea: A Nasal Airflow-Based Multi-Resolution Residual Network
por: Yue, Huijun, et al.
Publicado: (2021) -
Convolutional neural network based on photoplethysmography signals for sleep apnea syndrome detection
por: Jiang, Xinge, et al.
Publicado: (2023) -
Sleep Apnea, Obesity, and Readmissions: Real Risks or Residual Confounding?
por: Donovan, Lucas M., et al.
Publicado: (2022)