Cargando…
Numerical Analysis of Unsteady Hybrid Nanofluid Flow Comprising CNTs-Ferrousoxide/Water with Variable Magnetic Field
The introduction of hybrid nanofluids is an important concept in various engineering and industrial applications. It is used prominently in various engineering applications, such as wider absorption range, low-pressure drop, generator cooling, nuclear system cooling, good thermal conductivity, heat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781856/ https://www.ncbi.nlm.nih.gov/pubmed/35055199 http://dx.doi.org/10.3390/nano12020180 |
_version_ | 1784638180494934016 |
---|---|
author | Khan, Muhammad Sohail Mei, Sun Shabnam, Fernandez-Gamiz, Unai Noeiaghdam, Samad Shah, Said Anwar Khan, Aamir |
author_facet | Khan, Muhammad Sohail Mei, Sun Shabnam, Fernandez-Gamiz, Unai Noeiaghdam, Samad Shah, Said Anwar Khan, Aamir |
author_sort | Khan, Muhammad Sohail |
collection | PubMed |
description | The introduction of hybrid nanofluids is an important concept in various engineering and industrial applications. It is used prominently in various engineering applications, such as wider absorption range, low-pressure drop, generator cooling, nuclear system cooling, good thermal conductivity, heat exchangers, etc. In this article, the impact of variable magnetic field on the flow field of hybrid nano-fluid for the improvement of heat and mass transmission is investigated. The main objective of this study is to see the impact of hybrid nano-fluid (ferrous oxide water and carbon nanotubes) CNTs- [Formula: see text] , [Formula: see text] between two parallel plates with variable magnetic field. The governing momentum equation, energy equation, and the magnetic field equation have been reduced into a system of highly nonlinear ODEs by using similarity transformations. The parametric continuation method (PCM) has been utilized for the solution of the derived system of equations. For the validity of the model by PCM, the proposed model has also been solved via the shooting method. The numerical outcomes of the important flow properties such as velocity profile, temperature profile and variable magnetic field for the hybrid nanofluid are displayed quantitatively through various graphs and tables. It has been noticed that the increase in the volume friction of the nano-material significantly fluctuates the velocity profile near the channel wall due to an increase in the fluid density. In addition, single-wall nanotubes have a greater effect on temperature than multi-wall carbon nanotubes. Statistical analysis shows that the thermal flow rate of ([Formula: see text]-SWCNTs-water) and ([Formula: see text]-MWCNTs-water) rises from 1.6336 percent to 6.9519 percent, and 1.7614 percent to 7.4413 percent, respectively when the volume fraction of nanomaterial increases from 0.01 to 0.04. Furthermore, the body force accelerates near the wall of boundary layer because Lorentz force is small near the squeezing plate, as the current being almost parallel to the magnetic field. |
format | Online Article Text |
id | pubmed-8781856 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87818562022-01-22 Numerical Analysis of Unsteady Hybrid Nanofluid Flow Comprising CNTs-Ferrousoxide/Water with Variable Magnetic Field Khan, Muhammad Sohail Mei, Sun Shabnam, Fernandez-Gamiz, Unai Noeiaghdam, Samad Shah, Said Anwar Khan, Aamir Nanomaterials (Basel) Article The introduction of hybrid nanofluids is an important concept in various engineering and industrial applications. It is used prominently in various engineering applications, such as wider absorption range, low-pressure drop, generator cooling, nuclear system cooling, good thermal conductivity, heat exchangers, etc. In this article, the impact of variable magnetic field on the flow field of hybrid nano-fluid for the improvement of heat and mass transmission is investigated. The main objective of this study is to see the impact of hybrid nano-fluid (ferrous oxide water and carbon nanotubes) CNTs- [Formula: see text] , [Formula: see text] between two parallel plates with variable magnetic field. The governing momentum equation, energy equation, and the magnetic field equation have been reduced into a system of highly nonlinear ODEs by using similarity transformations. The parametric continuation method (PCM) has been utilized for the solution of the derived system of equations. For the validity of the model by PCM, the proposed model has also been solved via the shooting method. The numerical outcomes of the important flow properties such as velocity profile, temperature profile and variable magnetic field for the hybrid nanofluid are displayed quantitatively through various graphs and tables. It has been noticed that the increase in the volume friction of the nano-material significantly fluctuates the velocity profile near the channel wall due to an increase in the fluid density. In addition, single-wall nanotubes have a greater effect on temperature than multi-wall carbon nanotubes. Statistical analysis shows that the thermal flow rate of ([Formula: see text]-SWCNTs-water) and ([Formula: see text]-MWCNTs-water) rises from 1.6336 percent to 6.9519 percent, and 1.7614 percent to 7.4413 percent, respectively when the volume fraction of nanomaterial increases from 0.01 to 0.04. Furthermore, the body force accelerates near the wall of boundary layer because Lorentz force is small near the squeezing plate, as the current being almost parallel to the magnetic field. MDPI 2022-01-06 /pmc/articles/PMC8781856/ /pubmed/35055199 http://dx.doi.org/10.3390/nano12020180 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Khan, Muhammad Sohail Mei, Sun Shabnam, Fernandez-Gamiz, Unai Noeiaghdam, Samad Shah, Said Anwar Khan, Aamir Numerical Analysis of Unsteady Hybrid Nanofluid Flow Comprising CNTs-Ferrousoxide/Water with Variable Magnetic Field |
title | Numerical Analysis of Unsteady Hybrid Nanofluid Flow Comprising CNTs-Ferrousoxide/Water with Variable Magnetic Field |
title_full | Numerical Analysis of Unsteady Hybrid Nanofluid Flow Comprising CNTs-Ferrousoxide/Water with Variable Magnetic Field |
title_fullStr | Numerical Analysis of Unsteady Hybrid Nanofluid Flow Comprising CNTs-Ferrousoxide/Water with Variable Magnetic Field |
title_full_unstemmed | Numerical Analysis of Unsteady Hybrid Nanofluid Flow Comprising CNTs-Ferrousoxide/Water with Variable Magnetic Field |
title_short | Numerical Analysis of Unsteady Hybrid Nanofluid Flow Comprising CNTs-Ferrousoxide/Water with Variable Magnetic Field |
title_sort | numerical analysis of unsteady hybrid nanofluid flow comprising cnts-ferrousoxide/water with variable magnetic field |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781856/ https://www.ncbi.nlm.nih.gov/pubmed/35055199 http://dx.doi.org/10.3390/nano12020180 |
work_keys_str_mv | AT khanmuhammadsohail numericalanalysisofunsteadyhybridnanofluidflowcomprisingcntsferrousoxidewaterwithvariablemagneticfield AT meisun numericalanalysisofunsteadyhybridnanofluidflowcomprisingcntsferrousoxidewaterwithvariablemagneticfield AT shabnam numericalanalysisofunsteadyhybridnanofluidflowcomprisingcntsferrousoxidewaterwithvariablemagneticfield AT fernandezgamizunai numericalanalysisofunsteadyhybridnanofluidflowcomprisingcntsferrousoxidewaterwithvariablemagneticfield AT noeiaghdamsamad numericalanalysisofunsteadyhybridnanofluidflowcomprisingcntsferrousoxidewaterwithvariablemagneticfield AT shahsaidanwar numericalanalysisofunsteadyhybridnanofluidflowcomprisingcntsferrousoxidewaterwithvariablemagneticfield AT khanaamir numericalanalysisofunsteadyhybridnanofluidflowcomprisingcntsferrousoxidewaterwithvariablemagneticfield |