Cargando…

Optical Force on a Metal Nanorod Exerted by a Photonic Jet

In this article, we study the optical force exerted on nanorods. In recent years, the capture of micro-nanoparticles has been a frontier topic in optics. A Photonic Jet (PJ) is an emerging subwavelength beam with excellent application prospects. This paper studies the optical force exerted by photon...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Bojian, Gong, Shuhong, Li, Renxian, Minin, Igor V., Minin, Oleg V., Lin, Leke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781982/
https://www.ncbi.nlm.nih.gov/pubmed/35055268
http://dx.doi.org/10.3390/nano12020251
Descripción
Sumario:In this article, we study the optical force exerted on nanorods. In recent years, the capture of micro-nanoparticles has been a frontier topic in optics. A Photonic Jet (PJ) is an emerging subwavelength beam with excellent application prospects. This paper studies the optical force exerted by photonic jets generated by a plane wave illuminating a Generalized Luneburg Lens (GLLs) on nanorods. In the framework of the dipole approximation, the optical force on the nanorods is studied. The electric field of the photonic jet is calculated by the open-source software package DDSCAT developed based on the Discrete Dipole Approximation (DDA). In this paper, the effects of the nanorods’ orientation and dielectric constant on the transverse force F(x) and longitudinal force F(y) are analyzed. Numerical results show that the maximum value of the positive force and the negative force are equal and appear alternately at the position of the photonic jet. Therefore, to capture anisotropic nanoscale-geometries (nanorods), it is necessary to adjust the position of GLLs continuously. It is worth emphasizing that manipulations with nanorods will make it possible to create new materials at the nanoscale.