Cargando…
Dynamic Noise Reduction with Deep Residual Shrinkage Networks for Online Fault Classification
Fault signals in high-voltage (HV) power plant assets are captured using the electromagnetic interference (EMI) technique. The extracted EMI signals are taken under different conditions, introducing varying noise levels to the signals. The aim of this work is to address the varying noise levels foun...
Autores principales: | Salimy, Alireza, Mitiche, Imene, Boreham, Philip, Nesbitt, Alan, Morison, Gordon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781998/ https://www.ncbi.nlm.nih.gov/pubmed/35062476 http://dx.doi.org/10.3390/s22020515 |
Ejemplares similares
-
Entropy-Based Feature Extraction for Electromagnetic Discharges Classification in High-Voltage Power Generation
por: Mitiche, Imene, et al.
Publicado: (2018) -
Imaging Time Series for the Classification of EMI Discharge Sources
por: Mitiche, Imene, et al.
Publicado: (2018) -
Classification of Partial Discharge Signals by Combining Adaptive Local Iterative Filtering and Entropy Features
por: Mitiche, Imene, et al.
Publicado: (2018) -
Data-Driven Anomaly Detection in High-Voltage Transformer Bushings with LSTM Auto-Encoder
por: Mitiche, Imene, et al.
Publicado: (2021) -
Enhanced Partial Discharge Signal Denoising Using Dispersion Entropy Optimized Variational Mode Decomposition
por: Dhandapani, Ragavesh, et al.
Publicado: (2021)