Cargando…
Current forecast of COVID-19 in Mexico: A Bayesian and machine learning approaches
The COVID-19 pandemic has been widely spread and affected millions of people and caused hundreds of deaths worldwide, especially in patients with comorbilities and COVID-19. This manuscript aims to present models to predict, firstly, the number of coronavirus cases and secondly, the hospital care de...
Autor principal: | Prieto, Kernel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782335/ https://www.ncbi.nlm.nih.gov/pubmed/35061688 http://dx.doi.org/10.1371/journal.pone.0259958 |
Ejemplares similares
-
Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model
por: Watson, Gregory L., et al.
Publicado: (2021) -
Forecast and prediction of COVID-19 using machine learning
por: Painuli, Deepak, et al.
Publicado: (2021) -
Bayesian sequential data assimilation for COVID-19 forecasting
por: Daza-Torres, Maria L., et al.
Publicado: (2022) -
On mobility trends analysis of COVID–19 dissemination in Mexico City
por: Prieto, Kernel, et al.
Publicado: (2022) -
Forecasting outbound student mobility: A machine learning approach
por: Yang, Stephanie, et al.
Publicado: (2020)