Cargando…
Denoising of pediatric low dose abdominal CT using deep learning based algorithm
OBJECTIVES: To evaluate standard dose-like computed tomography (CT) images generated by a deep learning method, trained using unpaired low-dose CT (LDCT) and standard-dose CT (SDCT) images. MATERIALS AND METHODS: LDCT (80 kVp, 100 mAs, n = 83) and SDCT (120 kVp, 200 mAs, n = 42) images were divided...
Autores principales: | Park, Hyoung Suk, Jeon, Kiwan, Lee, JeongEun, You, Sun Kyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782418/ https://www.ncbi.nlm.nih.gov/pubmed/35061701 http://dx.doi.org/10.1371/journal.pone.0260369 |
Ejemplares similares
-
Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm
por: Shin, Yoon Joo, et al.
Publicado: (2020) -
Adaptively Tuned Iterative Low Dose CT Image Denoising
por: Hashemi, SayedMasoud, et al.
Publicado: (2015) -
A sinogram denoising algorithm for low-dose computed tomography
por: Karimi, Davood, et al.
Publicado: (2016) -
Convolutional auto-encoder for image denoising of ultra-low-dose CT
por: Nishio, Mizuho, et al.
Publicado: (2017) -
Edge-Preserving Median Filter and Weighted Coding with Sparse Nonlocal Regularization for Low-Dose CT Image Denoising Algorithm
por: Yuan, Quan, et al.
Publicado: (2021)