Cargando…
Harnessing optoelectronic noises in a photonic generative network
Integrated optoelectronics is emerging as a promising platform of neural network accelerator, which affords efficient in-memory computing and high bandwidth interconnectivity. The inherent optoelectronic noises, however, make the photonic systems error-prone in practice. It is thus imperative to dev...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782447/ https://www.ncbi.nlm.nih.gov/pubmed/35061531 http://dx.doi.org/10.1126/sciadv.abm2956 |
Sumario: | Integrated optoelectronics is emerging as a promising platform of neural network accelerator, which affords efficient in-memory computing and high bandwidth interconnectivity. The inherent optoelectronic noises, however, make the photonic systems error-prone in practice. It is thus imperative to devise strategies to mitigate and, if possible, harness noises in photonic computing systems. Here, we demonstrate a photonic generative network as a part of a generative adversarial network (GAN). This network is implemented with a photonic core consisting of an array of programable phase-change memory cells to perform four-element vector-vector dot multiplication. The GAN can generate a handwritten number (“7”) in experiments and full 10 digits in simulation. We realize an optical random number generator, apply noise-aware training by injecting additional noise, and demonstrate the network’s resilience to hardware nonidealities. Our results suggest the resilience and potential of more complex photonic generative networks based on large-scale, realistic photonic hardware. |
---|