Cargando…

Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma

Hepatocellular carcinoma is the most common primary liver cancer and the fifth most frequently diagnosed cancer worldwide. Most patients with advanced disease are offered non-surgical palliative treatment options. This work explores the first alpha-particle emitting radioembolization for the treatme...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Yong, Cortez, Angel, Josefsson, Anders, Zarisfi, Mohammadreza, Krimins, Rebecca, Liapi, Eleni, Nedrow, Jessie R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782514/
https://www.ncbi.nlm.nih.gov/pubmed/35061763
http://dx.doi.org/10.1371/journal.pone.0261982
_version_ 1784638333232611328
author Du, Yong
Cortez, Angel
Josefsson, Anders
Zarisfi, Mohammadreza
Krimins, Rebecca
Liapi, Eleni
Nedrow, Jessie R.
author_facet Du, Yong
Cortez, Angel
Josefsson, Anders
Zarisfi, Mohammadreza
Krimins, Rebecca
Liapi, Eleni
Nedrow, Jessie R.
author_sort Du, Yong
collection PubMed
description Hepatocellular carcinoma is the most common primary liver cancer and the fifth most frequently diagnosed cancer worldwide. Most patients with advanced disease are offered non-surgical palliative treatment options. This work explores the first alpha-particle emitting radioembolization for the treatment and monitoring of hepatic tumors. Furthermore, this works demonstrates the first in vivo simultaneous multiple-radionuclide SPECT-images of the complex decay chain of an [(225)Ac]Ac-labeled agent using a clinical SPECT system to monitor the temporal distribution. A DOTA chelator was modified with a lipophilic moiety and radiolabeled with the α-particle emitter Actinium-225. The resulting agent, [(225)Ac]Ac-DOTA-TDA, was emulsified in ethiodized oil and evaluated in vivo in mouse model and the VX2 rabbit technical model of liver cancer. SPECT imaging was performed to monitor distribution of the TAT agent and the free daughters. The [(225)Ac]Ac-DOTA-TDA emulsion was shown to retain within the HEP2G tumors and VX2 tumor, with minimal uptake within normal tissue. In the mouse model, significant improvements in overall survival were observed. SPECT-imaging was able to distinguish between the Actinium-225 agent (Francium-221) and the loss of the longer lived daughter, Bismuth-213. An α-particle emitting TARE agent is capable of targeting liver tumors with minimal accumulation in normal tissue, providing a potential therapeutic agent for the treatment of hepatocellular carcinoma as well as a variety of hepatic tumors. In addition, SPECT-imaging presented here supports the further development of imaging methodology and protocols that can be incorporated into the clinic to monitor Actinium-225-labeled agents.
format Online
Article
Text
id pubmed-8782514
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-87825142022-01-22 Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma Du, Yong Cortez, Angel Josefsson, Anders Zarisfi, Mohammadreza Krimins, Rebecca Liapi, Eleni Nedrow, Jessie R. PLoS One Research Article Hepatocellular carcinoma is the most common primary liver cancer and the fifth most frequently diagnosed cancer worldwide. Most patients with advanced disease are offered non-surgical palliative treatment options. This work explores the first alpha-particle emitting radioembolization for the treatment and monitoring of hepatic tumors. Furthermore, this works demonstrates the first in vivo simultaneous multiple-radionuclide SPECT-images of the complex decay chain of an [(225)Ac]Ac-labeled agent using a clinical SPECT system to monitor the temporal distribution. A DOTA chelator was modified with a lipophilic moiety and radiolabeled with the α-particle emitter Actinium-225. The resulting agent, [(225)Ac]Ac-DOTA-TDA, was emulsified in ethiodized oil and evaluated in vivo in mouse model and the VX2 rabbit technical model of liver cancer. SPECT imaging was performed to monitor distribution of the TAT agent and the free daughters. The [(225)Ac]Ac-DOTA-TDA emulsion was shown to retain within the HEP2G tumors and VX2 tumor, with minimal uptake within normal tissue. In the mouse model, significant improvements in overall survival were observed. SPECT-imaging was able to distinguish between the Actinium-225 agent (Francium-221) and the loss of the longer lived daughter, Bismuth-213. An α-particle emitting TARE agent is capable of targeting liver tumors with minimal accumulation in normal tissue, providing a potential therapeutic agent for the treatment of hepatocellular carcinoma as well as a variety of hepatic tumors. In addition, SPECT-imaging presented here supports the further development of imaging methodology and protocols that can be incorporated into the clinic to monitor Actinium-225-labeled agents. Public Library of Science 2022-01-21 /pmc/articles/PMC8782514/ /pubmed/35061763 http://dx.doi.org/10.1371/journal.pone.0261982 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Du, Yong
Cortez, Angel
Josefsson, Anders
Zarisfi, Mohammadreza
Krimins, Rebecca
Liapi, Eleni
Nedrow, Jessie R.
Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma
title Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma
title_full Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma
title_fullStr Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma
title_full_unstemmed Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma
title_short Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma
title_sort preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782514/
https://www.ncbi.nlm.nih.gov/pubmed/35061763
http://dx.doi.org/10.1371/journal.pone.0261982
work_keys_str_mv AT duyong preliminaryevaluationofalphaemittingradioembolizationinanimalmodelsofhepatocellularcarcinoma
AT cortezangel preliminaryevaluationofalphaemittingradioembolizationinanimalmodelsofhepatocellularcarcinoma
AT josefssonanders preliminaryevaluationofalphaemittingradioembolizationinanimalmodelsofhepatocellularcarcinoma
AT zarisfimohammadreza preliminaryevaluationofalphaemittingradioembolizationinanimalmodelsofhepatocellularcarcinoma
AT kriminsrebecca preliminaryevaluationofalphaemittingradioembolizationinanimalmodelsofhepatocellularcarcinoma
AT liapieleni preliminaryevaluationofalphaemittingradioembolizationinanimalmodelsofhepatocellularcarcinoma
AT nedrowjessier preliminaryevaluationofalphaemittingradioembolizationinanimalmodelsofhepatocellularcarcinoma