Cargando…
Interpretable machine learning for high-dimensional trajectories of aging health
We have built a computational model for individual aging trajectories of health and survival, which contains physical, functional, and biological variables, and is conditioned on demographic, lifestyle, and medical background information. We combine techniques of modern machine learning with an inte...
Autores principales: | Farrell, Spencer, Mitnitski, Arnold, Rockwood, Kenneth, Rutenberg, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782527/ https://www.ncbi.nlm.nih.gov/pubmed/35007286 http://dx.doi.org/10.1371/journal.pcbi.1009746 |
Ejemplares similares
-
Interpretable Machine Learning of High-Dimensional Aging Health Trajectories
por: Farrell, Spencer, et al.
Publicado: (2021) -
Forecasting Individual Aging Trajectories and Survival with an Interpretable Network Model
por: Farrell, Spencer, et al.
Publicado: (2020) -
Generating synthetic aging trajectories with a weighted network model using cross-sectional data
por: Farrell, Spencer, et al.
Publicado: (2020) -
Building, testing, and learning from network models of human aging
por: Rutenberg, Andrew, et al.
Publicado: (2020) -
UNDERSTANDING AGING AND FRAILTY WITH A PREDICTIVE NETWORK MODEL
por: Farrell, Spencer, et al.
Publicado: (2019)