Cargando…
A mutually-exclusive binary cross tagging framework for joint extraction of entities and relations
Joint extraction from unstructured text aims to extract relational triples composed of entity pairs and their relations. However, most existing works fail to process the overlapping issues that occur when the same entities are utilized to generate different relational triples in a sentence. In this...
Autores principales: | Liu, Xuan, Du, Wanru, Wang, Xiaoyin, Li, Ruiqun, Sun, Pengcheng, Jing, Xiaochuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782540/ https://www.ncbi.nlm.nih.gov/pubmed/35061704 http://dx.doi.org/10.1371/journal.pone.0260426 |
Ejemplares similares
-
A Measurement of $R_b$ using Mutually Exclusive Tags
por: Barate, R, et al.
Publicado: (1997) -
RTJTN: Relational Triplet Joint Tagging Network for Joint Entity and Relation Extraction
por: Yang, Zhenyu, et al.
Publicado: (2021) -
Algorithms for mutual exclusion /
por: Raynal, Michel
Publicado: (1986) -
Mutually Exclusive Uncertainty Relations
por: Xiao, Yunlong, et al.
Publicado: (2016) -
A Network-Centric Framework for the Evaluation of Mutual Exclusivity Tests on Cancer Drivers
por: Ahmed, Rafsan, et al.
Publicado: (2021)