Cargando…
Are CDS spreads predictable during the Covid-19 pandemic? Forecasting based on SVM, GMDH, LSTM and Markov switching autoregression
This paper investigates the forecasting performance for credit default swap (CDS) spreads by Support Vector Machines (SVM), Group Method of Data Handling (GMDH), Long Short-Term Memory (LSTM) and Markov switching autoregression (MSA) for daily CDS spreads of the 513 leading US companies, in the peri...
Autores principales: | Vukovic, Darko B., Romanyuk, Kirill, Ivashchenko, Sergey, Grigorieva, Elena M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782769/ https://www.ncbi.nlm.nih.gov/pubmed/35095216 http://dx.doi.org/10.1016/j.eswa.2022.116553 |
Ejemplares similares
-
Forecasting the spread of COVID-19 using LSTM network
por: Kumar, Shiu, et al.
Publicado: (2021) -
Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe
por: Ibrahim, Mohamed R., et al.
Publicado: (2021) -
A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform
por: Elbagoury, Bassant M., et al.
Publicado: (2023) -
Regime shifts in the COVID-19 case fatality rate dynamics: A Markov-switching autoregressive model analysis
por: Shiferaw, Yegnanew A.
Publicado: (2021) -
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021)