Cargando…
Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates
Magnetically frustrated systems provide fertile ground for complex behaviour, including unconventional ground states with emergent symmetries, topological properties, and exotic excitations. A canonical example is the emergence of magnetic-charge-carrying quasiparticles in spin-ice compounds. Despit...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782874/ https://www.ncbi.nlm.nih.gov/pubmed/35064100 http://dx.doi.org/10.1038/s41467-022-27964-y |
_version_ | 1784638407276756992 |
---|---|
author | Pearce, M. J. Götze, K. Szabó, A. Sikkenk, T. S. Lees, M. R. Boothroyd, A. T. Prabhakaran, D. Castelnovo, C. Goddard, P. A. |
author_facet | Pearce, M. J. Götze, K. Szabó, A. Sikkenk, T. S. Lees, M. R. Boothroyd, A. T. Prabhakaran, D. Castelnovo, C. Goddard, P. A. |
author_sort | Pearce, M. J. |
collection | PubMed |
description | Magnetically frustrated systems provide fertile ground for complex behaviour, including unconventional ground states with emergent symmetries, topological properties, and exotic excitations. A canonical example is the emergence of magnetic-charge-carrying quasiparticles in spin-ice compounds. Despite extensive work, a reliable experimental indicator of the density of these magnetic monopoles is yet to be found. Using measurements on single crystals of Ho(2)Ir(2)O(7) combined with dipolar Monte Carlo simulations, we show that the isothermal magnetoresistance is highly sensitive to the monopole density. Moreover, we uncover an unexpected and strong coupling between the monopoles on the holmium sublattice and the antiferromagnetically ordered iridium ions. These results pave the way towards a quantitative experimental measure of monopole density and demonstrate the ability to control antiferromagnetic domain walls using a uniform external magnetic field, a key goal in the design of next-generation spintronic devices. |
format | Online Article Text |
id | pubmed-8782874 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-87828742022-02-04 Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates Pearce, M. J. Götze, K. Szabó, A. Sikkenk, T. S. Lees, M. R. Boothroyd, A. T. Prabhakaran, D. Castelnovo, C. Goddard, P. A. Nat Commun Article Magnetically frustrated systems provide fertile ground for complex behaviour, including unconventional ground states with emergent symmetries, topological properties, and exotic excitations. A canonical example is the emergence of magnetic-charge-carrying quasiparticles in spin-ice compounds. Despite extensive work, a reliable experimental indicator of the density of these magnetic monopoles is yet to be found. Using measurements on single crystals of Ho(2)Ir(2)O(7) combined with dipolar Monte Carlo simulations, we show that the isothermal magnetoresistance is highly sensitive to the monopole density. Moreover, we uncover an unexpected and strong coupling between the monopoles on the holmium sublattice and the antiferromagnetically ordered iridium ions. These results pave the way towards a quantitative experimental measure of monopole density and demonstrate the ability to control antiferromagnetic domain walls using a uniform external magnetic field, a key goal in the design of next-generation spintronic devices. Nature Publishing Group UK 2022-01-21 /pmc/articles/PMC8782874/ /pubmed/35064100 http://dx.doi.org/10.1038/s41467-022-27964-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Pearce, M. J. Götze, K. Szabó, A. Sikkenk, T. S. Lees, M. R. Boothroyd, A. T. Prabhakaran, D. Castelnovo, C. Goddard, P. A. Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates |
title | Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates |
title_full | Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates |
title_fullStr | Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates |
title_full_unstemmed | Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates |
title_short | Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates |
title_sort | magnetic monopole density and antiferromagnetic domain control in spin-ice iridates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782874/ https://www.ncbi.nlm.nih.gov/pubmed/35064100 http://dx.doi.org/10.1038/s41467-022-27964-y |
work_keys_str_mv | AT pearcemj magneticmonopoledensityandantiferromagneticdomaincontrolinspiniceiridates AT gotzek magneticmonopoledensityandantiferromagneticdomaincontrolinspiniceiridates AT szaboa magneticmonopoledensityandantiferromagneticdomaincontrolinspiniceiridates AT sikkenkts magneticmonopoledensityandantiferromagneticdomaincontrolinspiniceiridates AT leesmr magneticmonopoledensityandantiferromagneticdomaincontrolinspiniceiridates AT boothroydat magneticmonopoledensityandantiferromagneticdomaincontrolinspiniceiridates AT prabhakarand magneticmonopoledensityandantiferromagneticdomaincontrolinspiniceiridates AT castelnovoc magneticmonopoledensityandantiferromagneticdomaincontrolinspiniceiridates AT goddardpa magneticmonopoledensityandantiferromagneticdomaincontrolinspiniceiridates |