Cargando…

HDAC10 Inhibits Cervical Cancer Progression through Downregulating the HDAC10-microRNA-223-EPB41L3 Axis

BACKGROUND: Although the tumorigenesis of cervical cancer (CC) has been widely investigated and recognized, the study of the systematic impact of histone deacetylase 10 (HDAC10), microRNA, and downstream molecular mechanisms in CC is still limited. Herein, cervical cancer, precancer lesions, and nor...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Yuan Yuan, Zhou, Guan Nan, Li, Yao, He, Hong Yu, Ding, Jing Xin, Hua, Ke Qin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8783137/
https://www.ncbi.nlm.nih.gov/pubmed/35075362
http://dx.doi.org/10.1155/2022/8092751
Descripción
Sumario:BACKGROUND: Although the tumorigenesis of cervical cancer (CC) has been widely investigated and recognized, the study of the systematic impact of histone deacetylase 10 (HDAC10), microRNA, and downstream molecular mechanisms in CC is still limited. Herein, cervical cancer, precancer lesions, and normal cervical tissues were collected to test the expression level of HDAC10, miR-223, and EPB41L3. The mechanism of HDAC10, miR-223, and EPB41L3 was interpreted in cervical cancer cells after HDAC10, miR-223, or EPB41L3 expression was altered. RESULTS: HDAC10 was poorly expressed in cervical cancer and precancer lesions, while miR-223 was highly expressed in cervical cancer. HDAC10 bound to miR-223, and miR-223 targeted EPB41L3. HDAC10 depressed the invasion property and tumorigenesis of cervical cancer via downregulating miR-223 and subsequently targeting EPB41L3. CONCLUSION: The study clarifies that HDAC10 inhibits cervical cancer by downregulating miR-223 and subsequently targeting EPB41L3 expression, which might provide a new insight for management upon cervical cancer and precancer lesions.