Cargando…
A U-Net Approach to Apical Lesion Segmentation on Panoramic Radiographs
The purpose of the paper was the assessment of the success of an artificial intelligence (AI) algorithm formed on a deep-convolutional neural network (D-CNN) model for the segmentation of apical lesions on dental panoramic radiographs. A total of 470 anonymized panoramic radiographs were used to pro...
Autores principales: | Bayrakdar, Ibrahim S., Orhan, Kaan, Çelik, Özer, Bilgir, Elif, Sağlam, Hande, Kaplan, Fatma Akkoca, Görür, Sinem Atay, Odabaş, Alper, Aslan, Ahmet Faruk, Różyło-Kalinowska, Ingrid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8783705/ https://www.ncbi.nlm.nih.gov/pubmed/35075428 http://dx.doi.org/10.1155/2022/7035367 |
Ejemplares similares
-
An artifıcial ıntelligence approach to automatic tooth detection and numbering in panoramic radiographs
por: Bilgir, Elif, et al.
Publicado: (2021) -
A Deep Learning Model for Idiopathic Osteosclerosis Detection on Panoramic Radiographs
por: Yesiltepe, Selin, et al.
Publicado: (2022) -
An artificial intelligence study: automatic description of anatomic landmarks on panoramic radiographs in the pediatric population
por: Bağ, İrem, et al.
Publicado: (2023) -
Assessing the Effectiveness of Artificial Intelligence Models for Detecting Alveolar Bone Loss in Periodontal Disease: A Panoramic Radiograph Study
por: Uzun Saylan, Bilge Cansu, et al.
Publicado: (2023) -
Automatic Feature Segmentation in Dental Periapical Radiographs
por: Ari, Tugba, et al.
Publicado: (2022)