Cargando…
Deep Learning Application for Effective Classification of Different Types of Psoriasis
Psoriasis is a chronic inflammatory skin disorder mediated by the immune response that affects a large number of people. According to latest worldwide statistics, 125 million individuals are suffering from psoriasis. Deep learning techniques have demonstrated success in the prediction of skin diseas...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8783723/ https://www.ncbi.nlm.nih.gov/pubmed/35075392 http://dx.doi.org/10.1155/2022/7541583 |
_version_ | 1784638594247294976 |
---|---|
author | Aijaz, Syeda Fatima Khan, Saad Jawaid Azim, Fahad Shakeel, Choudhary Sobhan Hassan, Umer |
author_facet | Aijaz, Syeda Fatima Khan, Saad Jawaid Azim, Fahad Shakeel, Choudhary Sobhan Hassan, Umer |
author_sort | Aijaz, Syeda Fatima |
collection | PubMed |
description | Psoriasis is a chronic inflammatory skin disorder mediated by the immune response that affects a large number of people. According to latest worldwide statistics, 125 million individuals are suffering from psoriasis. Deep learning techniques have demonstrated success in the prediction of skin diseases and can also lead to the classification of different types of psoriasis. Hence, we propose a deep learning-based application for effective classification of five types of psoriasis namely, plaque, guttate, inverse, pustular, and erythrodermic as well as the prediction of normal skin. We used 172 images of normal skin from the BFL NTU dataset and 301 images of psoriasis from the Dermnet dataset. The input sample images underwent image preprocessing including data augmentation, enhancement, and segmentation which was followed by color, texture, and shape feature extraction. Two deep learning algorithms of convolutional neural network (CNN) and long short-term memory (LSTM) were applied with the classification models being trained with 80% of the images. The reported accuracies of CNN and LSTM are 84.2% and 72.3%, respectively. A paired sample T-test exhibited significant differences between the accuracies generated by the two deep learning algorithms with a p < 0.001. The accuracies reported from this study demonstrate potential of this deep learning application to be applied to other areas of dermatology for better prediction. |
format | Online Article Text |
id | pubmed-8783723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-87837232022-01-23 Deep Learning Application for Effective Classification of Different Types of Psoriasis Aijaz, Syeda Fatima Khan, Saad Jawaid Azim, Fahad Shakeel, Choudhary Sobhan Hassan, Umer J Healthc Eng Research Article Psoriasis is a chronic inflammatory skin disorder mediated by the immune response that affects a large number of people. According to latest worldwide statistics, 125 million individuals are suffering from psoriasis. Deep learning techniques have demonstrated success in the prediction of skin diseases and can also lead to the classification of different types of psoriasis. Hence, we propose a deep learning-based application for effective classification of five types of psoriasis namely, plaque, guttate, inverse, pustular, and erythrodermic as well as the prediction of normal skin. We used 172 images of normal skin from the BFL NTU dataset and 301 images of psoriasis from the Dermnet dataset. The input sample images underwent image preprocessing including data augmentation, enhancement, and segmentation which was followed by color, texture, and shape feature extraction. Two deep learning algorithms of convolutional neural network (CNN) and long short-term memory (LSTM) were applied with the classification models being trained with 80% of the images. The reported accuracies of CNN and LSTM are 84.2% and 72.3%, respectively. A paired sample T-test exhibited significant differences between the accuracies generated by the two deep learning algorithms with a p < 0.001. The accuracies reported from this study demonstrate potential of this deep learning application to be applied to other areas of dermatology for better prediction. Hindawi 2022-01-15 /pmc/articles/PMC8783723/ /pubmed/35075392 http://dx.doi.org/10.1155/2022/7541583 Text en Copyright © 2022 Syeda Fatima Aijaz et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Aijaz, Syeda Fatima Khan, Saad Jawaid Azim, Fahad Shakeel, Choudhary Sobhan Hassan, Umer Deep Learning Application for Effective Classification of Different Types of Psoriasis |
title | Deep Learning Application for Effective Classification of Different Types of Psoriasis |
title_full | Deep Learning Application for Effective Classification of Different Types of Psoriasis |
title_fullStr | Deep Learning Application for Effective Classification of Different Types of Psoriasis |
title_full_unstemmed | Deep Learning Application for Effective Classification of Different Types of Psoriasis |
title_short | Deep Learning Application for Effective Classification of Different Types of Psoriasis |
title_sort | deep learning application for effective classification of different types of psoriasis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8783723/ https://www.ncbi.nlm.nih.gov/pubmed/35075392 http://dx.doi.org/10.1155/2022/7541583 |
work_keys_str_mv | AT aijazsyedafatima deeplearningapplicationforeffectiveclassificationofdifferenttypesofpsoriasis AT khansaadjawaid deeplearningapplicationforeffectiveclassificationofdifferenttypesofpsoriasis AT azimfahad deeplearningapplicationforeffectiveclassificationofdifferenttypesofpsoriasis AT shakeelchoudharysobhan deeplearningapplicationforeffectiveclassificationofdifferenttypesofpsoriasis AT hassanumer deeplearningapplicationforeffectiveclassificationofdifferenttypesofpsoriasis |