Cargando…
Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT
Brain tissue segmentation plays a crucial role in feature extraction, volumetric quantification, and morphometric analysis of brain scans. For the assessment of brain structure and integrity, CT is a non-invasive, cheaper, faster, and more widely available modality than MRI. However, the clinical ap...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8784554/ https://www.ncbi.nlm.nih.gov/pubmed/35082608 http://dx.doi.org/10.3389/fncom.2021.785244 |
_version_ | 1784638766494777344 |
---|---|
author | Srikrishna, Meera Heckemann, Rolf A. Pereira, Joana B. Volpe, Giovanni Zettergren, Anna Kern, Silke Westman, Eric Skoog, Ingmar Schöll, Michael |
author_facet | Srikrishna, Meera Heckemann, Rolf A. Pereira, Joana B. Volpe, Giovanni Zettergren, Anna Kern, Silke Westman, Eric Skoog, Ingmar Schöll, Michael |
author_sort | Srikrishna, Meera |
collection | PubMed |
description | Brain tissue segmentation plays a crucial role in feature extraction, volumetric quantification, and morphometric analysis of brain scans. For the assessment of brain structure and integrity, CT is a non-invasive, cheaper, faster, and more widely available modality than MRI. However, the clinical application of CT is mostly limited to the visual assessment of brain integrity and exclusion of copathologies. We have previously developed two-dimensional (2D) deep learning-based segmentation networks that successfully classified brain tissue in head CT. Recently, deep learning-based MRI segmentation models successfully use patch-based three-dimensional (3D) segmentation networks. In this study, we aimed to develop patch-based 3D segmentation networks for CT brain tissue classification. Furthermore, we aimed to compare the performance of 2D- and 3D-based segmentation networks to perform brain tissue classification in anisotropic CT scans. For this purpose, we developed 2D and 3D U-Net-based deep learning models that were trained and validated on MR-derived segmentations from scans of 744 participants of the Gothenburg H70 Cohort with both CT and T1-weighted MRI scans acquired timely close to each other. Segmentation performance of both 2D and 3D models was evaluated on 234 unseen datasets using measures of distance, spatial similarity, and tissue volume. Single-task slice-wise processed 2D U-Nets performed better than multitask patch-based 3D U-Nets in CT brain tissue classification. These findings provide support to the use of 2D U-Nets to segment brain tissue in one-dimensional (1D) CT. This could increase the application of CT to detect brain abnormalities in clinical settings. |
format | Online Article Text |
id | pubmed-8784554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87845542022-01-25 Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT Srikrishna, Meera Heckemann, Rolf A. Pereira, Joana B. Volpe, Giovanni Zettergren, Anna Kern, Silke Westman, Eric Skoog, Ingmar Schöll, Michael Front Comput Neurosci Neuroscience Brain tissue segmentation plays a crucial role in feature extraction, volumetric quantification, and morphometric analysis of brain scans. For the assessment of brain structure and integrity, CT is a non-invasive, cheaper, faster, and more widely available modality than MRI. However, the clinical application of CT is mostly limited to the visual assessment of brain integrity and exclusion of copathologies. We have previously developed two-dimensional (2D) deep learning-based segmentation networks that successfully classified brain tissue in head CT. Recently, deep learning-based MRI segmentation models successfully use patch-based three-dimensional (3D) segmentation networks. In this study, we aimed to develop patch-based 3D segmentation networks for CT brain tissue classification. Furthermore, we aimed to compare the performance of 2D- and 3D-based segmentation networks to perform brain tissue classification in anisotropic CT scans. For this purpose, we developed 2D and 3D U-Net-based deep learning models that were trained and validated on MR-derived segmentations from scans of 744 participants of the Gothenburg H70 Cohort with both CT and T1-weighted MRI scans acquired timely close to each other. Segmentation performance of both 2D and 3D models was evaluated on 234 unseen datasets using measures of distance, spatial similarity, and tissue volume. Single-task slice-wise processed 2D U-Nets performed better than multitask patch-based 3D U-Nets in CT brain tissue classification. These findings provide support to the use of 2D U-Nets to segment brain tissue in one-dimensional (1D) CT. This could increase the application of CT to detect brain abnormalities in clinical settings. Frontiers Media S.A. 2022-01-10 /pmc/articles/PMC8784554/ /pubmed/35082608 http://dx.doi.org/10.3389/fncom.2021.785244 Text en Copyright © 2022 Srikrishna, Heckemann, Pereira, Volpe, Zettergren, Kern, Westman, Skoog and Schöll. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Srikrishna, Meera Heckemann, Rolf A. Pereira, Joana B. Volpe, Giovanni Zettergren, Anna Kern, Silke Westman, Eric Skoog, Ingmar Schöll, Michael Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT |
title | Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT |
title_full | Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT |
title_fullStr | Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT |
title_full_unstemmed | Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT |
title_short | Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT |
title_sort | comparison of two-dimensional- and three-dimensional-based u-net architectures for brain tissue classification in one-dimensional brain ct |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8784554/ https://www.ncbi.nlm.nih.gov/pubmed/35082608 http://dx.doi.org/10.3389/fncom.2021.785244 |
work_keys_str_mv | AT srikrishnameera comparisonoftwodimensionalandthreedimensionalbasedunetarchitecturesforbraintissueclassificationinonedimensionalbrainct AT heckemannrolfa comparisonoftwodimensionalandthreedimensionalbasedunetarchitecturesforbraintissueclassificationinonedimensionalbrainct AT pereirajoanab comparisonoftwodimensionalandthreedimensionalbasedunetarchitecturesforbraintissueclassificationinonedimensionalbrainct AT volpegiovanni comparisonoftwodimensionalandthreedimensionalbasedunetarchitecturesforbraintissueclassificationinonedimensionalbrainct AT zettergrenanna comparisonoftwodimensionalandthreedimensionalbasedunetarchitecturesforbraintissueclassificationinonedimensionalbrainct AT kernsilke comparisonoftwodimensionalandthreedimensionalbasedunetarchitecturesforbraintissueclassificationinonedimensionalbrainct AT westmaneric comparisonoftwodimensionalandthreedimensionalbasedunetarchitecturesforbraintissueclassificationinonedimensionalbrainct AT skoogingmar comparisonoftwodimensionalandthreedimensionalbasedunetarchitecturesforbraintissueclassificationinonedimensionalbrainct AT schollmichael comparisonoftwodimensionalandthreedimensionalbasedunetarchitecturesforbraintissueclassificationinonedimensionalbrainct |