Cargando…
IDEAS: individual level differential expression analysis for single-cell RNA-seq data
We consider an increasingly popular study design where single-cell RNA-seq data are collected from multiple individuals and the question of interest is to find genes that are differentially expressed between two groups of individuals. Towards this end, we propose a statistical method named IDEAS (in...
Autores principales: | Zhang, Mengqi, Liu, Si, Miao, Zhen, Han, Fang, Gottardo, Raphael, Sun, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8784862/ https://www.ncbi.nlm.nih.gov/pubmed/35073995 http://dx.doi.org/10.1186/s13059-022-02605-1 |
Ejemplares similares
-
SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
por: Peng, Tao, et al.
Publicado: (2019) -
Detecting differential usage of exons from RNA-seq data
por: Anders, Simon, et al.
Publicado: (2012) -
ARH-seq: identification of differential splicing in RNA-seq data
por: Rasche, Axel, et al.
Publicado: (2014) -
A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
por: Korthauer, Keegan D., et al.
Publicado: (2016) -
Sierra: discovery of differential transcript usage from polyA-captured single-cell RNA-seq data
por: Patrick, Ralph, et al.
Publicado: (2020)