Cargando…
Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients
Limited previous studies focused on the death and progression risk stratification of colorectal cancer (CRC) lung metastasis patients. The aim of this study is to construct a nomogram model combing machine learning-pathomics, radiomics features, Immunoscore and clinical factors to predict the postop...
Autores principales: | Wang, Renjie, Dai, Weixing, Gong, Jing, Huang, Mingzhu, Hu, Tingdan, Li, Hang, Lin, Kailin, Tan, Cong, Hu, Hong, Tong, Tong, Cai, Guoxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785554/ https://www.ncbi.nlm.nih.gov/pubmed/35073937 http://dx.doi.org/10.1186/s13045-022-01225-3 |
Ejemplares similares
-
A clinical-radiomics nomogram for the preoperative prediction of lymph node metastasis in colorectal cancer
por: Li, Menglei, et al.
Publicado: (2020) -
Prognostic and predictive value of radiomics signatures in stage I‐III colon cancer
por: Dai, Weixing, et al.
Publicado: (2020) -
Integrating pathomics with radiomics and genomics for cancer prognosis: A brief review
por: Lu, Cheng, et al.
Publicado: (2021) -
Combining Immunoscore with Clinicopathologic Features in Cholangiocarcinoma: An Influential Prognostic Nomogram
por: Wu, Zi-You, et al.
Publicado: (2020) -
An immunoscore nomogram for predicting survival in patients with oesophageal cancer
por: Li, Gaoming, et al.
Publicado: (2021)