Cargando…
The Development and Validation of Simplified Machine Learning Algorithms to Predict Prognosis of Hospitalized Patients With COVID-19: Multicenter, Retrospective Study
BACKGROUND: The current COVID-19 pandemic is unprecedented; under resource-constrained settings, predictive algorithms can help to stratify disease severity, alerting physicians of high-risk patients; however, there are only few risk scores derived from a substantially large electronic health record...
Autores principales: | He, Fang, Page, John H, Weinberg, Kerry R, Mishra, Anirban |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785956/ https://www.ncbi.nlm.nih.gov/pubmed/34951865 http://dx.doi.org/10.2196/31549 |
Ejemplares similares
-
Scikit-learn: machine learning simplified
por: Garreta, Raúl, et al.
Publicado: (2017) -
Simplified Pediatric Index of Mortality 3 Score by Explainable Machine Learning Algorithm
por: Baloglu, Orkun, et al.
Publicado: (2021) -
Deep Learning With Electronic Health Records for Short-Term Fracture Risk Identification: Crystal Bone Algorithm Development and Validation
por: Almog, Yasmeen Adar, et al.
Publicado: (2020) -
A simplified machine learning model utilizing platelet-related genes for predicting poor prognosis in sepsis
por: Diao, Yingying, et al.
Publicado: (2023) -
Machine learning algorithm using publicly available echo database for simplified “visual estimation” of left ventricular ejection fraction
por: Blaivas, Michael, et al.
Publicado: (2022)