Cargando…
Catalytic conversion of glycerol and co-feeds (fatty acids, alcohols, and alkanes) to bio-based aromatics: remarkable and unprecedented synergetic effects on catalyst performance
Glycerol is an attractive bio-based platform chemical that can be converted to a variety of bio-based chemicals. We here report a catalytic co-conversion strategy where glycerol in combination with a second (bio-)feed (fatty acids, alcohols, alkanes) is used for the production of bio-based aromatics...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785961/ https://www.ncbi.nlm.nih.gov/pubmed/35177952 http://dx.doi.org/10.1039/d1gc03531b |
_version_ | 1784639041061257216 |
---|---|
author | He, Songbo Kramer, Thomas Sjouke Santosa, Dian Sukmayanda Heeres, Andre Heeres, Hero Jan |
author_facet | He, Songbo Kramer, Thomas Sjouke Santosa, Dian Sukmayanda Heeres, Andre Heeres, Hero Jan |
author_sort | He, Songbo |
collection | PubMed |
description | Glycerol is an attractive bio-based platform chemical that can be converted to a variety of bio-based chemicals. We here report a catalytic co-conversion strategy where glycerol in combination with a second (bio-)feed (fatty acids, alcohols, alkanes) is used for the production of bio-based aromatics (BTX). Experiments were performed in a fixed bed reactor (10 g catalyst loading and WHSV of (co-)feed of 1 h(−1)) at 550 °C using a technical H-ZSM-5/Al(2)O(3) catalyst. Synergistic effects of the co-feeding on the peak BTX carbon yield, product selectivity, total BTX productivity, catalyst life-time, and catalyst regenerability were observed and quantified. Best results were obtained for the co-conversion of glycerol and oleic acid (45/55 wt%), showing a peak BTX carbon yield of 26.7 C%. The distribution of C and H of the individual co-feeds in the BTX product was investigated using an integrated fast pyrolysis-GC-Orbitrap MS unit, showing that the aromatics are formed from both glycerol and the co-feed. The results of this study may be used to develop optimized co-feeding strategies for BTX formation. |
format | Online Article Text |
id | pubmed-8785961 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-87859612022-02-15 Catalytic conversion of glycerol and co-feeds (fatty acids, alcohols, and alkanes) to bio-based aromatics: remarkable and unprecedented synergetic effects on catalyst performance He, Songbo Kramer, Thomas Sjouke Santosa, Dian Sukmayanda Heeres, Andre Heeres, Hero Jan Green Chem Chemistry Glycerol is an attractive bio-based platform chemical that can be converted to a variety of bio-based chemicals. We here report a catalytic co-conversion strategy where glycerol in combination with a second (bio-)feed (fatty acids, alcohols, alkanes) is used for the production of bio-based aromatics (BTX). Experiments were performed in a fixed bed reactor (10 g catalyst loading and WHSV of (co-)feed of 1 h(−1)) at 550 °C using a technical H-ZSM-5/Al(2)O(3) catalyst. Synergistic effects of the co-feeding on the peak BTX carbon yield, product selectivity, total BTX productivity, catalyst life-time, and catalyst regenerability were observed and quantified. Best results were obtained for the co-conversion of glycerol and oleic acid (45/55 wt%), showing a peak BTX carbon yield of 26.7 C%. The distribution of C and H of the individual co-feeds in the BTX product was investigated using an integrated fast pyrolysis-GC-Orbitrap MS unit, showing that the aromatics are formed from both glycerol and the co-feed. The results of this study may be used to develop optimized co-feeding strategies for BTX formation. The Royal Society of Chemistry 2021-12-18 /pmc/articles/PMC8785961/ /pubmed/35177952 http://dx.doi.org/10.1039/d1gc03531b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry He, Songbo Kramer, Thomas Sjouke Santosa, Dian Sukmayanda Heeres, Andre Heeres, Hero Jan Catalytic conversion of glycerol and co-feeds (fatty acids, alcohols, and alkanes) to bio-based aromatics: remarkable and unprecedented synergetic effects on catalyst performance |
title | Catalytic conversion of glycerol and co-feeds (fatty acids, alcohols, and alkanes) to bio-based aromatics: remarkable and unprecedented synergetic effects on catalyst performance |
title_full | Catalytic conversion of glycerol and co-feeds (fatty acids, alcohols, and alkanes) to bio-based aromatics: remarkable and unprecedented synergetic effects on catalyst performance |
title_fullStr | Catalytic conversion of glycerol and co-feeds (fatty acids, alcohols, and alkanes) to bio-based aromatics: remarkable and unprecedented synergetic effects on catalyst performance |
title_full_unstemmed | Catalytic conversion of glycerol and co-feeds (fatty acids, alcohols, and alkanes) to bio-based aromatics: remarkable and unprecedented synergetic effects on catalyst performance |
title_short | Catalytic conversion of glycerol and co-feeds (fatty acids, alcohols, and alkanes) to bio-based aromatics: remarkable and unprecedented synergetic effects on catalyst performance |
title_sort | catalytic conversion of glycerol and co-feeds (fatty acids, alcohols, and alkanes) to bio-based aromatics: remarkable and unprecedented synergetic effects on catalyst performance |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785961/ https://www.ncbi.nlm.nih.gov/pubmed/35177952 http://dx.doi.org/10.1039/d1gc03531b |
work_keys_str_mv | AT hesongbo catalyticconversionofglycerolandcofeedsfattyacidsalcoholsandalkanestobiobasedaromaticsremarkableandunprecedentedsynergeticeffectsoncatalystperformance AT kramerthomassjouke catalyticconversionofglycerolandcofeedsfattyacidsalcoholsandalkanestobiobasedaromaticsremarkableandunprecedentedsynergeticeffectsoncatalystperformance AT santosadiansukmayanda catalyticconversionofglycerolandcofeedsfattyacidsalcoholsandalkanestobiobasedaromaticsremarkableandunprecedentedsynergeticeffectsoncatalystperformance AT heeresandre catalyticconversionofglycerolandcofeedsfattyacidsalcoholsandalkanestobiobasedaromaticsremarkableandunprecedentedsynergeticeffectsoncatalystperformance AT heeresherojan catalyticconversionofglycerolandcofeedsfattyacidsalcoholsandalkanestobiobasedaromaticsremarkableandunprecedentedsynergeticeffectsoncatalystperformance |