Cargando…
Identifying Potential miRNA Biomarkers for Gastric Cancer Diagnosis Using Machine Learning Variable Selection Approach
Aim: This study aimed to accurately identification of potential miRNAs for gastric cancer (GC) diagnosis at the early stages of the disease. Methods: We used GSE106817 data with 2,566 miRNAs to train the machine learning models. We used the Boruta machine learning variable selection approach to iden...
Autores principales: | Gilani, Neda, Arabi Belaghi, Reza, Aftabi, Younes, Faramarzi, Elnaz, Edgünlü, Tuba, Somi, Mohammad Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785967/ https://www.ncbi.nlm.nih.gov/pubmed/35082831 http://dx.doi.org/10.3389/fgene.2021.779455 |
Ejemplares similares
-
Exploration of Potential miRNA Biomarkers and Prediction for Ovarian Cancer Using Artificial Intelligence
por: Hamidi, Farzaneh, et al.
Publicado: (2021) -
Polymorphism (-499C/G) in
DDAH2
promoter may act as a protective factor for metabolic syndrome: A case-control study in Azar-Cohort population
por: Faramarzi, Elnaz, et al.
Publicado: (2021) -
Identifying potential circulating miRNA biomarkers for the diagnosis and prediction of ovarian cancer using machine-learning approach: application of Boruta
por: Hamidi, Farzaneh, et al.
Publicado: (2023) -
Association of NOS3-c.894G>T transversion with susceptibility to metabolic syndrome in Azar-cohort population: A case-control study and in silico analysis of the SNP molecular effects
por: Seyedrezazadeh, Ensiyeh, et al.
Publicado: (2021) -
Prediction of preterm birth in nulliparous women using logistic regression and machine learning
por: Arabi Belaghi, Reza, et al.
Publicado: (2021)