Cargando…
PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation
The accurate segmentation of retinal vessels images can not only be used to evaluate and monitor various ophthalmic diseases, but also timely reflect systemic diseases such as diabetes and blood diseases. Therefore, the study on segmentation of retinal vessels images is of great significance for the...
Autores principales: | Chen, Danny, Yang, Wenzhong, Wang, Liejun, Tan, Sixiang, Lin, Jiangzhaung, Bu, Wenxiu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786152/ https://www.ncbi.nlm.nih.gov/pubmed/35073371 http://dx.doi.org/10.1371/journal.pone.0262689 |
Ejemplares similares
-
TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation
por: Huang, Xuping, et al.
Publicado: (2022) -
A-DenseUNet: Adaptive Densely Connected UNet for Polyp Segmentation in Colonoscopy Images with Atrous Convolution
por: Safarov, Sirojbek, et al.
Publicado: (2021) -
Weight Pruning-UNet: Weight Pruning UNet with Depth-wise Separable Convolutions for Semantic Segmentation of Kidney Tumors
por: Rao, Patike Kiran, et al.
Publicado: (2022) -
MTPA_Unet: Multi-Scale Transformer-Position Attention Retinal Vessel Segmentation Network Joint Transformer and CNN
por: Jiang, Yun, et al.
Publicado: (2022) -
RFE-UNet: Remote Feature Exploration with Local Learning for Medical Image Segmentation
por: Zhong, Xiuxian, et al.
Publicado: (2023)