Cargando…

Visualization of copper nanoclusters for SARS-CoV-2 Delta variant detection based on rational primers design

Here, based on the design of rational primers and copper nanoclusters (CuNCs), we present a method for the accurate detection of the SARS-CoV-2 Delta variant, which is capable of distinguishing the Delta variant with its single nucleotide polymorphism from the ‘wild type’ coronavirus (NC_045512.2),...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Zaihui, Zhu, Longjiao, Xu, Wentao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786405/
https://www.ncbi.nlm.nih.gov/pubmed/35093776
http://dx.doi.org/10.1016/j.talanta.2022.123266
Descripción
Sumario:Here, based on the design of rational primers and copper nanoclusters (CuNCs), we present a method for the accurate detection of the SARS-CoV-2 Delta variant, which is capable of distinguishing the Delta variant with its single nucleotide polymorphism from the ‘wild type’ coronavirus (NC_045512.2), and realizing visualization signal out. Specifically, we show that dual priming oligonucleotide (DPO) primers and AT primers can be used to distinguish between wild types and mutations of this virus by polymerase chain reaction (PCR) analysis and that visualization can be achieved via the red fluorescence of CuNCs in ultraviolet radiation. Among the results, it was found that the R-1-down (DPO)-6I and F-1-30 AT, with the single nucleotide deletion site designed at the 3′ end of the downstream primer, showed the best specificity towards the Delta variant. Moreover, the use of AT primers increased the AT contents of the PCR products, thus meeting the template requirements generated by the CuNCs. It was also found that the AT primers could assist with improving detection specificity. Finally, we demonstrate that the visualization of the CuNCs-based detection assay exhibited a linear relationship in 0.5 pg μL(−1)–50 ng μL(−1), with a limit of quantitation (LOQ) of 0.5 pg μL(−1).