Cargando…
Recognition of Ocular Artifacts in EEG Signal through a Hybrid Optimized Scheme
Brain computer interface (BCI) requires an online and real-time processing of EEG signals. Hence, the accuracy of the recording system is improved by nullifying the developed artifacts. The goal of this proposal is to develop a hybrid model for recognizing and minimizing ocular artifacts through an...
Autores principales: | Sahoo, Santosh Kumar, Mohapatra, Sumant Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786538/ https://www.ncbi.nlm.nih.gov/pubmed/35083329 http://dx.doi.org/10.1155/2022/4875399 |
Ejemplares similares
-
Optimized deformable convolution network for detection and mitigation of ocular artifacts from EEG signal
por: Prasad, Devulapalli Shyam, et al.
Publicado: (2022) -
Ear-EEG sensitivity modeling for neural sources and ocular artifacts
por: Yarici, Metin C., et al.
Publicado: (2023) -
Quantifying Signal Quality From Unimodal and Multimodal Sources: Application to EEG With Ocular and Motion Artifacts
por: Nahmias, David O., et al.
Publicado: (2021) -
Physiological artifacts in scalp EEG and ear-EEG
por: Kappel, Simon L., et al.
Publicado: (2017) -
Hybrid ICA—Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals
por: Mannan, Malik M. Naeem, et al.
Publicado: (2016)