Cargando…
A gradient tree boosting and network propagation derived pan-cancer survival network of the tumor microenvironment
Predicting cancer survival from molecular data is an important aspect of biomedical research because it allows quantifying patient risks and thus individualizing therapy. We introduce XGBoost tree ensemble learning to predict survival from transcriptome data of 8,024 patients from 25 different cance...
Autores principales: | Thedinga, Kristina, Herwig, Ralf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786644/ https://www.ncbi.nlm.nih.gov/pubmed/35106465 http://dx.doi.org/10.1016/j.isci.2021.103617 |
Ejemplares similares
-
Gradient tree boosting and network propagation for the identification of pan-cancer survival networks
por: Thedinga, Kristina, et al.
Publicado: (2022) -
Pre-Training on In Vitro and Fine-Tuning on Patient-Derived Data Improves Deep Neural Networks for Anti-Cancer Drug-Sensitivity Prediction
por: Prasse, Paul, et al.
Publicado: (2022) -
Matching anticancer compounds and tumor cell lines by neural networks with ranking loss
por: Prasse, Paul, et al.
Publicado: (2022) -
NetCore: a network propagation approach using node coreness
por: Barel, Gal, et al.
Publicado: (2020) -
Predicting effective drug combinations using gradient tree boosting based on features extracted from drug-protein heterogeneous network
por: Liu, Hui, et al.
Publicado: (2019)