Cargando…
Deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation
The vascular endothelium is a hot spot in the response to radiation therapy for both tumors and normal tissues. To improve patient outcomes, interpretable systemic hypotheses are needed to help radiobiologists and radiation oncologists propose endothelial targets that could protect normal tissues fr...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786676/ https://www.ncbi.nlm.nih.gov/pubmed/35106469 http://dx.doi.org/10.1016/j.isci.2021.103685 |
_version_ | 1784639166363992064 |
---|---|
author | Morilla, Ian Chan, Philippe Caffin, Fanny Svilar, Ljubica Selbonne, Sonia Ladaigue, Ségolène Buard, Valérie Tarlet, Georges Micheau, Béatrice Paget, Vincent François, Agnès Souidi, Maâmar Martin, Jean-Charles Vaudry, David Benadjaoud, Mohamed-Amine Milliat, Fabien Guipaud, Olivier |
author_facet | Morilla, Ian Chan, Philippe Caffin, Fanny Svilar, Ljubica Selbonne, Sonia Ladaigue, Ségolène Buard, Valérie Tarlet, Georges Micheau, Béatrice Paget, Vincent François, Agnès Souidi, Maâmar Martin, Jean-Charles Vaudry, David Benadjaoud, Mohamed-Amine Milliat, Fabien Guipaud, Olivier |
author_sort | Morilla, Ian |
collection | PubMed |
description | The vascular endothelium is a hot spot in the response to radiation therapy for both tumors and normal tissues. To improve patient outcomes, interpretable systemic hypotheses are needed to help radiobiologists and radiation oncologists propose endothelial targets that could protect normal tissues from the adverse effects of radiation therapy and/or enhance its antitumor potential. To this end, we captured the kinetics of multi-omics layers—i.e. miRNome, targeted transcriptome, proteome, and metabolome—in irradiated primary human endothelial cells cultured in vitro. We then designed a strategy of deep learning as in convolutional graph networks that facilitates unsupervised high-level feature extraction of important omics data to learn how ionizing radiation-induced endothelial dysfunction may evolve over time. Last, we present experimental data showing that some of the features identified using our approach are involved in the alteration of angiogenesis by ionizing radiation. |
format | Online Article Text |
id | pubmed-8786676 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-87866762022-01-31 Deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation Morilla, Ian Chan, Philippe Caffin, Fanny Svilar, Ljubica Selbonne, Sonia Ladaigue, Ségolène Buard, Valérie Tarlet, Georges Micheau, Béatrice Paget, Vincent François, Agnès Souidi, Maâmar Martin, Jean-Charles Vaudry, David Benadjaoud, Mohamed-Amine Milliat, Fabien Guipaud, Olivier iScience Article The vascular endothelium is a hot spot in the response to radiation therapy for both tumors and normal tissues. To improve patient outcomes, interpretable systemic hypotheses are needed to help radiobiologists and radiation oncologists propose endothelial targets that could protect normal tissues from the adverse effects of radiation therapy and/or enhance its antitumor potential. To this end, we captured the kinetics of multi-omics layers—i.e. miRNome, targeted transcriptome, proteome, and metabolome—in irradiated primary human endothelial cells cultured in vitro. We then designed a strategy of deep learning as in convolutional graph networks that facilitates unsupervised high-level feature extraction of important omics data to learn how ionizing radiation-induced endothelial dysfunction may evolve over time. Last, we present experimental data showing that some of the features identified using our approach are involved in the alteration of angiogenesis by ionizing radiation. Elsevier 2021-12-30 /pmc/articles/PMC8786676/ /pubmed/35106469 http://dx.doi.org/10.1016/j.isci.2021.103685 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Morilla, Ian Chan, Philippe Caffin, Fanny Svilar, Ljubica Selbonne, Sonia Ladaigue, Ségolène Buard, Valérie Tarlet, Georges Micheau, Béatrice Paget, Vincent François, Agnès Souidi, Maâmar Martin, Jean-Charles Vaudry, David Benadjaoud, Mohamed-Amine Milliat, Fabien Guipaud, Olivier Deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation |
title | Deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation |
title_full | Deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation |
title_fullStr | Deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation |
title_full_unstemmed | Deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation |
title_short | Deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation |
title_sort | deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786676/ https://www.ncbi.nlm.nih.gov/pubmed/35106469 http://dx.doi.org/10.1016/j.isci.2021.103685 |
work_keys_str_mv | AT morillaian deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT chanphilippe deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT caffinfanny deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT svilarljubica deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT selbonnesonia deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT ladaiguesegolene deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT buardvalerie deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT tarletgeorges deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT micheaubeatrice deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT pagetvincent deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT francoisagnes deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT souidimaamar deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT martinjeancharles deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT vaudrydavid deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT benadjaoudmohamedamine deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT milliatfabien deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation AT guipaudolivier deepmodelsofintegratedmultiscalemoleculardatadeciphertheendothelialcellresponsetoionizingradiation |