Cargando…

Nonvolatile electrical switching of optical and valleytronic properties of interlayer excitons

Long-lived interlayer excitons (IXs) in van der Waals heterostructures (HSs) stacked by monolayer transition metal dichalcogenides (TMDs) carry valley-polarized information and thus could find promising applications in valleytronic devices. Current manipulation approaches for valley polarization of...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Tong, Li, Yongzhuo, Li, Junze, Shen, Hongzhi, Ren, Junwen, Ning, Cun-Zheng, Li, Dehui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786835/
https://www.ncbi.nlm.nih.gov/pubmed/35075106
http://dx.doi.org/10.1038/s41377-022-00718-7
Descripción
Sumario:Long-lived interlayer excitons (IXs) in van der Waals heterostructures (HSs) stacked by monolayer transition metal dichalcogenides (TMDs) carry valley-polarized information and thus could find promising applications in valleytronic devices. Current manipulation approaches for valley polarization of IXs are mainly limited in electrical field/doping, magnetic field or twist-angle engineering. Here, we demonstrate an electrochemical-doping method, which is efficient, in-situ and nonvolatile. We find the emission characteristics of IXs in WS(2)/WSe(2) HSs exhibit a large excitonic/valley-polarized hysteresis upon cyclic-voltage sweeping, which is ascribed to the chemical-doping of O(2)/H(2)O redox couple trapped between WSe(2) and substrate. Taking advantage of the large hysteresis, a nonvolatile valley-addressable memory is successfully demonstrated. The valley-polarized information can be non-volatilely switched by electrical gating with retention time exceeding 60 min. These findings open up an avenue for nonvolatile valley-addressable memory and could stimulate more investigations on valleytronic devices.