Cargando…
Bayesian modeling of item heterogeneity in dichotomous recognition memory data and prospects for computerized adaptive testing
Most current models of recognition memory fail to separately model item and person heterogeneity which makes it difficult to assess ability at the latent construct level and prevents the administration of adaptive tests. Here we propose to employ a General Condorcet Model for Recognition (GCMR) in o...
Autores principales: | Güsten, Jeremie, Berron, David, Düzel, Emrah, Ziegler, Gabriel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786965/ https://www.ncbi.nlm.nih.gov/pubmed/35075157 http://dx.doi.org/10.1038/s41598-022-04997-3 |
Ejemplares similares
-
Feasibility of Digital Memory Assessments in an Unsupervised and Remote Study Setting
por: Berron, David, et al.
Publicado: (2022) -
Compromised Item Detection for Computerized Adaptive Testing
por: Liu, Cheng, et al.
Publicado: (2019) -
The Accuracy of Computerized Adaptive Testing in Heterogeneous Populations: A Mixture Item-Response Theory Analysis
por: Sawatzky, Richard, et al.
Publicado: (2016) -
LASSO-Based Pattern Recognition for Replenished Items With Graded Responses in Multidimensional Computerized Adaptive Testing
por: Sun, Jianan, et al.
Publicado: (2022) -
Content-specific vulnerability of recent episodic memories in Alzheimer's disease
por: Grande, Xenia, et al.
Publicado: (2021)