Cargando…
Kinetics and Mechanism of In Situ Metallization of Bulk DNA Films
DNA-templated metallization is broadly investigated in the fabrication of metallic structures by virtue of the unique DNA-metal ion interaction. However, current DNA-templated synthesis is primarily carried out based on pure DNA in an aqueous solution. In this study, we present in situ synthesis of...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787019/ https://www.ncbi.nlm.nih.gov/pubmed/35072827 http://dx.doi.org/10.1186/s11671-022-03658-8 |
Sumario: | DNA-templated metallization is broadly investigated in the fabrication of metallic structures by virtue of the unique DNA-metal ion interaction. However, current DNA-templated synthesis is primarily carried out based on pure DNA in an aqueous solution. In this study, we present in situ synthesis of metallic structures in a natural DNA complex bulk film by UV light irradiation, where the growth of silver particles is resolved by in situ time-resolved small-angle X-ray scattering and dielectric spectroscopy. Our studies provide physical insights into the kinetics and mechanisms of natural DNA metallization, in correlation with the multi-stage switching operations in the bulk phase, paving the way towards the development of versatile biomaterial composites with tunable physical properties for optical storage, plasmonics, and catalytic applications. |
---|