Cargando…
From What to Why, the Growing Need for a Focus Shift Toward Explainability of AI in Digital Pathology
While it is impossible to deny the performance gains achieved through the incorporation of deep learning (DL) and other artificial intelligence (AI)-based techniques in pathology, minimal work has been done to answer the crucial question of why these algorithms predict what they predict. Tracing bac...
Autores principales: | Border, Samuel P., Sarder, Pinaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787050/ https://www.ncbi.nlm.nih.gov/pubmed/35087427 http://dx.doi.org/10.3389/fphys.2021.821217 |
Ejemplares similares
-
COVID-19 and Hypertension: The What, the Why, and the How
por: Muhamad, Shah-Abas, et al.
Publicado: (2021) -
89 Bridging Cell Biology and Engineering Sciences: Interdisciplinary Team-based Training in Computational Pathology – ERRATUM
por: Tan, Myles Joshua T., et al.
Publicado: (2023) -
2140: Estimating microscopic structures of glomeruli in renal pathology
por: Sarder, Pinaki, et al.
Publicado: (2018) -
89 Bridging Cell Biology and Engineering Sciences: Interdisciplinary Team-based Training in Computational Pathology
por: Levites, Yulia A., et al.
Publicado: (2023) -
Explainable AI
por: Samek, Wojciech, et al.
Publicado: (2019)