Cargando…
Prediction of E. coli Concentrations in Agricultural Pond Waters: Application and Comparison of Machine Learning Algorithms
The microbial quality of irrigation water is an important issue as the use of contaminated waters has been linked to several foodborne outbreaks. To expedite microbial water quality determinations, many researchers estimate concentrations of the microbial contamination indicator Escherichia coli (E....
Autores principales: | Stocker, Matthew D., Pachepsky, Yakov A., Hill, Robert L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787305/ https://www.ncbi.nlm.nih.gov/pubmed/35088045 http://dx.doi.org/10.3389/frai.2021.768650 |
Ejemplares similares
-
Interpretability Versus Accuracy: A Comparison of Machine Learning Models Built Using Different Algorithms, Performance Measures, and Features to Predict E. coli Levels in Agricultural Water
por: Weller, Daniel L., et al.
Publicado: (2021) -
Inside out: transforming images of lab-grown plants for machine learning applications in agriculture
por: Krosney, Alexander E., et al.
Publicado: (2023) -
Estimating Successful Internal Mobility: A Comparison Between Structural Equation Models and Machine Learning Algorithms
por: Bossi, Francesco, et al.
Publicado: (2022) -
Editorial: Machine Learning for Water Resources
por: Mariethoz, Gregoire, et al.
Publicado: (2021) -
Impact of Box-Cox Transformation on Machine-Learning Algorithms
por: Blum, Luca, et al.
Publicado: (2022)