Cargando…
Accelerating DNN Training Through Selective Localized Learning
Training Deep Neural Networks (DNNs) places immense compute requirements on the underlying hardware platforms, expending large amounts of time and energy. We propose LoCal+SGD, a new algorithmic approach to accelerate DNN training by selectively combining localized or Hebbian learning within a Stoch...
Autores principales: | Krithivasan, Sarada, Sen, Sanchari, Venkataramani, Swagath, Raghunathan, Anand |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787307/ https://www.ncbi.nlm.nih.gov/pubmed/35087370 http://dx.doi.org/10.3389/fnins.2021.759807 |
Ejemplares similares
-
Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks
por: Nallathambi, Abinand, et al.
Publicado: (2021) -
Performance of the track selection DNN in Run 3
por: CMS Collaboration
Publicado: (2023) -
A DNN for CMS track classification and selection
por: Giannini, Leonardo
Publicado: (2023) -
Online Learning for DNN Training: A Stochastic Block Adaptive Gradient Algorithm
por: Liu, Jianghui, et al.
Publicado: (2022) -
DNN-MVL: DNN-Multi-View-Learning-Based Recover Block Missing Data in a Dam Safety Monitoring System
por: Mao, Yingchi, et al.
Publicado: (2019)