Cargando…

Graphene Oxide Catalyzed Synthesis of Fused Chromeno Spiro Pyrrolidine Oxindoles via Tandem Decarboxylation and 1,3-Dipolar Cycloaddition

A short and efficient multicomponent sequence for synthesizing fused novel polyheterocyclic chromeno spiro-pyrrolidine oxindoles via 1,3-dipolar cycloaddition reaction mediated by reactive azomethine ylides catalyzed by the Graphene Oxide (GO) is reported herein. This approach was utilized for synth...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Vipin, Lakshmi, Shanta Raj, Chowhan, L. Raju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787336/
https://www.ncbi.nlm.nih.gov/pubmed/35087791
http://dx.doi.org/10.3389/fchem.2021.759436
Descripción
Sumario:A short and efficient multicomponent sequence for synthesizing fused novel polyheterocyclic chromeno spiro-pyrrolidine oxindoles via 1,3-dipolar cycloaddition reaction mediated by reactive azomethine ylides catalyzed by the Graphene Oxide (GO) is reported herein. This approach was utilized for synthesizing fused polyheterocyclic spiro-pyrrolothiazole and spiro-pyrrole oxindoles with yields ranging from good to excellent. A heterogeneous GO catalyst with an ultra-low catalytic loading of 0.05 wt% could proficiently catalyze the reaction without the formation of any side products and can also be visualized by the formation of solid mass in the reaction flask. The methodology is green in nature and the products were isolated by simple filtration without the use of any chromatographic techniques.