Cargando…

A Lamellar Yolk–Shell Lithium‐Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance

The shuttling behavior and slow conversion kinetics of the intermediate lithium polysulfides are the severe obstacles for the application of lithium‐sulfur (Li‐S) batteries over a wide temperature range. Here, an engineered lamellar yolk–shell structure of In(2)O(3)@void@carbon for the Li‐S battery...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jinyun, Ding, Yingyi, Shen, Zihan, Zhang, Huigang, Han, Tianli, Guan, Yong, Tian, Yangchao, Braun, Paul V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787391/
https://www.ncbi.nlm.nih.gov/pubmed/34845856
http://dx.doi.org/10.1002/advs.202103517
_version_ 1784639354012958720
author Liu, Jinyun
Ding, Yingyi
Shen, Zihan
Zhang, Huigang
Han, Tianli
Guan, Yong
Tian, Yangchao
Braun, Paul V.
author_facet Liu, Jinyun
Ding, Yingyi
Shen, Zihan
Zhang, Huigang
Han, Tianli
Guan, Yong
Tian, Yangchao
Braun, Paul V.
author_sort Liu, Jinyun
collection PubMed
description The shuttling behavior and slow conversion kinetics of the intermediate lithium polysulfides are the severe obstacles for the application of lithium‐sulfur (Li‐S) batteries over a wide temperature range. Here, an engineered lamellar yolk–shell structure of In(2)O(3)@void@carbon for the Li‐S battery cathode is developed for the first time to construct a powerful barrier that effectively inhibits the shuttling of polysulfides. On the basis of the unique nanochannel‐containing morphology, the continuous kinetic transformation of sulfur and polysulfides is confined in a stable framework, which is demonstrated by using X‐ray nanotomography. The constructed Li‐S battery exhibits a high cycling capability over 1000 cycles at 1.0 C with a capacity decay rate as low as 0.038% per cycle, good rate performance, and temperature tolerance at −10, 25, and 50 °C. A nondestructive in situ monitoring method of the interfacial reaction resistance in different cycling stages is proposed, which provides a new analysis perspective for the development of emerging electrochemical energy‐storage systems.
format Online
Article
Text
id pubmed-8787391
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-87873912022-01-31 A Lamellar Yolk–Shell Lithium‐Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance Liu, Jinyun Ding, Yingyi Shen, Zihan Zhang, Huigang Han, Tianli Guan, Yong Tian, Yangchao Braun, Paul V. Adv Sci (Weinh) Research Articles The shuttling behavior and slow conversion kinetics of the intermediate lithium polysulfides are the severe obstacles for the application of lithium‐sulfur (Li‐S) batteries over a wide temperature range. Here, an engineered lamellar yolk–shell structure of In(2)O(3)@void@carbon for the Li‐S battery cathode is developed for the first time to construct a powerful barrier that effectively inhibits the shuttling of polysulfides. On the basis of the unique nanochannel‐containing morphology, the continuous kinetic transformation of sulfur and polysulfides is confined in a stable framework, which is demonstrated by using X‐ray nanotomography. The constructed Li‐S battery exhibits a high cycling capability over 1000 cycles at 1.0 C with a capacity decay rate as low as 0.038% per cycle, good rate performance, and temperature tolerance at −10, 25, and 50 °C. A nondestructive in situ monitoring method of the interfacial reaction resistance in different cycling stages is proposed, which provides a new analysis perspective for the development of emerging electrochemical energy‐storage systems. John Wiley and Sons Inc. 2021-11-29 /pmc/articles/PMC8787391/ /pubmed/34845856 http://dx.doi.org/10.1002/advs.202103517 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Liu, Jinyun
Ding, Yingyi
Shen, Zihan
Zhang, Huigang
Han, Tianli
Guan, Yong
Tian, Yangchao
Braun, Paul V.
A Lamellar Yolk–Shell Lithium‐Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance
title A Lamellar Yolk–Shell Lithium‐Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance
title_full A Lamellar Yolk–Shell Lithium‐Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance
title_fullStr A Lamellar Yolk–Shell Lithium‐Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance
title_full_unstemmed A Lamellar Yolk–Shell Lithium‐Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance
title_short A Lamellar Yolk–Shell Lithium‐Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance
title_sort lamellar yolk–shell lithium‐sulfur battery cathode displaying ultralong cycling life, high rate performance, and temperature tolerance
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787391/
https://www.ncbi.nlm.nih.gov/pubmed/34845856
http://dx.doi.org/10.1002/advs.202103517
work_keys_str_mv AT liujinyun alamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT dingyingyi alamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT shenzihan alamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT zhanghuigang alamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT hantianli alamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT guanyong alamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT tianyangchao alamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT braunpaulv alamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT liujinyun lamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT dingyingyi lamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT shenzihan lamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT zhanghuigang lamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT hantianli lamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT guanyong lamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT tianyangchao lamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance
AT braunpaulv lamellaryolkshelllithiumsulfurbatterycathodedisplayingultralongcyclinglifehighrateperformanceandtemperaturetolerance