Cargando…
A Bayesian machine learning approach for spatio-temporal prediction of COVID-19 cases
Modeling the spread of infectious diseases in space and time needs to take care of complex dependencies and uncertainties. Machine learning methods, and neural networks, in particular, are useful in modeling this sort of complex problems, although they generally lack of probabilistic interpretations...
Autores principales: | Niraula, Poshan, Mateu, Jorge, Chaudhuri, Somnath |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787453/ https://www.ncbi.nlm.nih.gov/pubmed/35095341 http://dx.doi.org/10.1007/s00477-021-02168-w |
Ejemplares similares
-
Multivariate Kalman filtering for spatio-temporal processes
por: Ferreira, Guillermo, et al.
Publicado: (2022) -
Spatio-temporal small area surveillance of the COVID-19 pandemic
por: Martinez-Beneito, Miguel A., et al.
Publicado: (2022) -
Spatio-temporal stochastic differential equations for crime incidence modeling
por: Calatayud, Julia, et al.
Publicado: (2023) -
Evaluation of predictive capability of Bayesian spatio-temporal models for Covid-19 spread
por: Lawson, Andrew B.
Publicado: (2023) -
A hierarchical spatio-temporal model to analyze relative risk variations of COVID-19: a focus on Spain, Italy and Germany
por: Jalilian, Abdollah, et al.
Publicado: (2021)