Cargando…
Implementation of supervised principal component analysis for global sensitivity analysis of models with correlated inputs
Global Sensitivity Analysis (GSA) plays a significant role in quantifying the tangible impact of model inputs on the uncertainty of response variable. As GSA results are strongly affected by correlated inputs, several studies have considered this issue, but most of them are computationally expensive...
Autores principales: | Sharbaf, Mohammad Ali Mohammad Jafar, Abedini, Mohammad Javad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787458/ https://www.ncbi.nlm.nih.gov/pubmed/35095342 http://dx.doi.org/10.1007/s00477-021-02158-y |
Ejemplares similares
-
Using Supervised Principal Components Analysis to Assess Multiple Pollutant Effects
por: Roberts, Steven, et al.
Publicado: (2006) -
Supervised categorical principal component analysis for genome-wide association analyses
por: Lu, Meng, et al.
Publicado: (2014) -
A latent variable approach to account for correlated inputs in global sensitivity analysis
por: Melillo, Nicola, et al.
Publicado: (2021) -
Fetal QRS Detection in Noninvasive Abdominal Electrocardiograms Using Principal Component Analysis and Discrete Wavelet Transforms with Signal Quality Estimation
por: Mollakazemi, Mohammad Javad, et al.
Publicado: (2021) -
Efficient toolkit implementing best practices for principal component analysis of population genetic data
por: Privé, Florian, et al.
Publicado: (2020)