Cargando…
A deep learning segmentation strategy that minimizes the amount of manually annotated images
Deep learning has revolutionized the automatic processing of images. While deep convolutional neural networks have demonstrated astonishing segmentation results for many biological objects acquired with microscopy, this technology's good performance relies on large training datasets. In this pa...
Autores principales: | Pécot, Thierry, Alekseyenko, Alexander, Wallace, Kristin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787559/ https://www.ncbi.nlm.nih.gov/pubmed/35136569 http://dx.doi.org/10.12688/f1000research.52026.2 |
Ejemplares similares
-
GeneSegNet: a deep learning framework for cell segmentation by integrating gene expression and imaging
por: Wang, Yuxing, et al.
Publicado: (2023) -
Accurate quantification of chromosomal lesions via short tandem repeat analysis using minimal amounts of DNA
por: Jann, Johann-Christoph, et al.
Publicado: (2017) -
ImageJ/Fiji ROI 1-click tools for rapid manual image annotations and measurements
por: Thomas, Laurent S.V., et al.
Publicado: (2020) -
Training a deep learning model for single-cell segmentation without manual annotation
por: Din, Nizam Ud, et al.
Publicado: (2021) -
Annotation-efficient deep learning for automatic medical image segmentation
por: Wang, Shanshan, et al.
Publicado: (2021)