Cargando…

Empowering Undergraduates to Fight Climate Change with Soil Microbes

The burning of fossil fuels to meet a growing demand for energy has created a climate crisis that threatens Earth's fragile ecosystems. While most undergraduate students are familiar with solar and wind energy as sustainable alternatives to fossil fuels, many are not aware of a climate solution...

Descripción completa

Detalles Bibliográficos
Autor principal: Taylor-Cornejo, Elias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc., publishers 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787709/
https://www.ncbi.nlm.nih.gov/pubmed/34967684
http://dx.doi.org/10.1089/dna.2021.0551
Descripción
Sumario:The burning of fossil fuels to meet a growing demand for energy has created a climate crisis that threatens Earth's fragile ecosystems. While most undergraduate students are familiar with solar and wind energy as sustainable alternatives to fossil fuels, many are not aware of a climate solution right beneath their feet—soil-dwelling microbes! Microbial fuel cells (MFCs) harness energy from the metabolic activity of microbes in the soil to generate electricity. Recently, the coronavirus disease 2019 (COVID-19) pandemic transformed the traditional microbiology teaching laboratory into take-home laboratory kits and online modes of delivery, which could accommodate distance learning. This laboratory exercise combined both virtual laboratory simulations and a commercially available MFC kit to challenge undergraduate students to apply fundamental principles in microbiology to real-world climate solutions.