Cargando…
A machine learning approach for modeling decisions in the out of hospital cardiac arrest care workflow
BACKGROUND: A growing body of research has shown that machine learning (ML) can be a useful tool to predict how different variable combinations affect out-of-hospital cardiac arrest (OHCA) survival outcomes. However, there remain significant research gaps on the utilization of ML models for decision...
Autores principales: | Harford, Samuel, Del Rios, Marina, Heinert, Sara, Weber, Joseph, Markul, Eddie, Tataris, Katie, Campbell, Teri, Vanden Hoek, Terry, Darabi, Houshang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787933/ https://www.ncbi.nlm.nih.gov/pubmed/35078470 http://dx.doi.org/10.1186/s12911-021-01730-4 |
Ejemplares similares
-
Retrospective Study of Midazolam Protocol for Prehospital Behavioral Emergencies
por: Huebinger, Ryan M., et al.
Publicado: (2020) -
Epidemiology of out-of-Hospital Cardiac Arrests, knowledge of cardiovascular disease and risk factors in a regional setting in India: The Warangal Area out-of-hospital Cardiac Arrest Registry (WACAR)
por: Ramaka, Srinivas, et al.
Publicado: (2020) -
Pay It Forward: High School Video-based Instruction Can Disseminate CPR Knowledge in Priority Neighborhoods
por: Del Rios, Marina, et al.
Publicado: (2018) -
Revisiting Warfarin Dosing Using Machine Learning Techniques
por: Sharabiani, Ashkan, et al.
Publicado: (2015) -
National Trends in the Utilization of Emergency Medical Services for Acute Myocardial Infarction and Stroke
por: Tataris, Katie, et al.
Publicado: (2014)