Cargando…
AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens
BACKGROUND: Antibiotic resistance is a growing global health concern prompting researchers to seek alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) are attracting attention again as therapeutic agents with promising utility in this domain, and using in silico methods to discov...
Autores principales: | Li, Chenkai, Sutherland, Darcy, Hammond, S. Austin, Yang, Chen, Taho, Figali, Bergman, Lauren, Houston, Simon, Warren, René L., Wong, Titus, Hoang, Linda M. N., Cameron, Caroline E., Helbing, Caren C., Birol, Inanc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788131/ https://www.ncbi.nlm.nih.gov/pubmed/35078402 http://dx.doi.org/10.1186/s12864-022-08310-4 |
Ejemplares similares
-
Antimicrobial peptides from Rana [Lithobates] catesbeiana: Gene structure and bioinformatic identification of novel forms from tadpoles
por: Helbing, Caren C., et al.
Publicado: (2019) -
Models and data of AMPlify: a deep learning tool for antimicrobial peptide prediction
por: Li, Chenkai, et al.
Publicado: (2023) -
Mining Amphibian and Insect Transcriptomes for Antimicrobial Peptide Sequences with rAMPage
por: Lin, Diana, et al.
Publicado: (2022) -
De novo Transcriptome Assemblies of Rana (Lithobates) catesbeiana and Xenopus laevis Tadpole Livers for Comparative Genomics without Reference Genomes
por: Birol, Inanc, et al.
Publicado: (2015) -
Associating Biological Activity and Predicted Structure of Antimicrobial Peptides from Amphibians and Insects
por: Richter, Amelia, et al.
Publicado: (2022)