Cargando…

MGF360-9L Is a Major Virulence Factor Associated with the African Swine Fever Virus by Antagonizing the JAK/STAT Signaling Pathway

African swine fever (ASF)—an aggressive infectious disease caused by the African swine fever virus (ASFV)—is significantly unfavorable for swine production. ASFV has a complex structure and encodes 150–167 proteins; however, the function of most of these proteins is unknown. This study identified AS...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Keshan, Yang, Bo, Shen, Chaochao, Zhang, Ting, Hao, Yu, Zhang, Dajun, Liu, Huanan, Shi, Xijuan, Li, Guoli, Yang, Jinke, Li, Dan, Zhu, Zixiang, Tian, Hong, Yang, Fan, Ru, Yi, Cao, Wei Jun, Guo, Jianhong, He, Jijun, Zheng, Haixue, Liu, Xiangtao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788333/
https://www.ncbi.nlm.nih.gov/pubmed/35076286
http://dx.doi.org/10.1128/mbio.02330-21
Descripción
Sumario:African swine fever (ASF)—an aggressive infectious disease caused by the African swine fever virus (ASFV)—is significantly unfavorable for swine production. ASFV has a complex structure and encodes 150–167 proteins; however, the function of most of these proteins is unknown. This study identified ASFV MGF360-9L as a negative regulator of the interferon (IFN)-β signal. Further evidence showed that MGF360-9L interacts with signal transducer and activator of transcription (STAT) 1 and STAT2 and degrades STAT1 and STAT2 through apoptosis and ubiquitin–proteasome pathways, respectively. Subsequently, the activation of IFN-β signaling was inhibited. Naturally isolated or genetically manipulated live attenuated viruses are known to protect against the virulent parental ASFV strains. Therefore, through homologous recombination, we deleted MGF360-9L from the virulent ASFV CN/GS/2018 strain to construct a recombinant strain, ASFV-Δ360-9L. Compared with the parent ASFV CN/GS/2018 strain, the replication level of ASFV-Δ360-9L decreased in primary porcine alveolar macrophage cultures at 24 h postinfection, but the difference is unlikely to be biologically relevant. Notably, ASFV-Δ360-9L was partially attenuated in pigs. To our knowledge, this study is the first to uncover the function of MGF360-9L during ASFV infection. MGF360-9L inhibits IFN-β signaling through the targeted degradation of STAT1 and STAT2. Furthermore, MGF360-9L is a key virulence gene of ASFV. Our findings reveal a new mechanism by which ASFV inhibits host antiviral response; this might facilitate the development of live attenuated ASFV vaccines.