Cargando…
Penalized-Likelihood PET Image Reconstruction Using Similarity-Driven Median Regularization
In this paper, we present a new regularized image reconstruction method for positron emission tomography (PET), where an adaptive weighted median regularizer is used in the context of a penalized-likelihood framework. The motivation of our work is to overcome the limitation of the conventional media...
Autores principales: | Ren, Xue, Jung, Ji Eun, Zhu, Wen, Lee, Soo-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788485/ https://www.ncbi.nlm.nih.gov/pubmed/35076630 http://dx.doi.org/10.3390/tomography8010013 |
Ejemplares similares
-
Similarity-Driven Fine-Tuning Methods for Regularization Parameter Optimization in PET Image Reconstruction
por: Zhu, Wen, et al.
Publicado: (2023) -
Improved image reconstruction of (89)Zr-immunoPET studies using a Bayesian penalized likelihood reconstruction algorithm
por: Kirchner, Julian, et al.
Publicado: (2021) -
Impact of the Bayesian penalized likelihood algorithm (Q.Clear®) in comparison with the OSEM reconstruction on low contrast PET hypoxic images
por: Texte, Edgar, et al.
Publicado: (2020) -
Comparison of Quadratic- and Median-Based Roughness Penalties for Penalized-Likelihood Sinogram Restoration in Computed Tomography
por: La Rivière, Patrick J., et al.
Publicado: (2006) -
Bayesian penalized likelihood PET reconstruction impact on quantitative metrics in diffuse large B-cell lymphoma
por: Young, Jason R., et al.
Publicado: (2023)