Cargando…

Egg White Alginate as a Novel Scaffold Biomaterial for 3D Salivary Cell Culturing

Saliva production by salivary glands play a crucial role in oral health. The loss of salivary gland function could lead to xerostomia, a condition also known as dry mouth. Significant reduction in saliva production could lead to further complications such as difficulty in speech, mastication, and in...

Descripción completa

Detalles Bibliográficos
Autores principales: Pham, Hieu M., Zhang, Yuli, Munguia-Lopez, Jose G., Tran, Simon D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788534/
https://www.ncbi.nlm.nih.gov/pubmed/35076454
http://dx.doi.org/10.3390/biomimetics7010005
Descripción
Sumario:Saliva production by salivary glands play a crucial role in oral health. The loss of salivary gland function could lead to xerostomia, a condition also known as dry mouth. Significant reduction in saliva production could lead to further complications such as difficulty in speech, mastication, and increased susceptibility to dental caries and oral infections and diseases. While some palliative treatments are available for xerostomia, there are no curative treatments to date. This study explores the use of Egg White Alginate (EWA), as an alternative scaffold to Matrigel(®) for culturing 3D salivary gland cells. A protocol for an optimized EWA was established by comparing cell viability using 1%, 2%, and 3% alginate solution. The normal salivary simian virus 40-immortalized acinar cell (NS-SV-AC) and the submandibular gland-human-1 (SMG-hu-1) cell lines were also used to compare the spheroid formation and cell viability properties of both scaffold biomaterials; cell viability was observed over 10 days using a Live–Dead Cell Assay. Cell viability and spheroid size in 2% EWA was significantly greater than 1% and 3%. It is evident that EWA can support salivary cell survivability as well as form larger spheroids when compared to cells grown in Matrigel(®). However, further investigations are necessary as it is unclear if cultured cells were proliferating or aggregating.