Cargando…
Characterization of cross-species transcription and splicing from Penicillium to Saccharomyces cerevisiae
Heterologous expression of eukaryotic gene clusters in yeast has been widely used for producing high-value chemicals and bioactive secondary metabolites. However, eukaryotic transcription cis-elements are still undercharacterized, and the cross-species expression mechanism remains poorly understood....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788760/ https://www.ncbi.nlm.nih.gov/pubmed/34387324 http://dx.doi.org/10.1093/jimb/kuab054 |
Sumario: | Heterologous expression of eukaryotic gene clusters in yeast has been widely used for producing high-value chemicals and bioactive secondary metabolites. However, eukaryotic transcription cis-elements are still undercharacterized, and the cross-species expression mechanism remains poorly understood. Here we used the whole expression unit (including original promoter, terminator, and open reading frame with introns) of orotidine 5′-monophosphate decarboxylases from 14 Penicillium species as a showcase, and analyzed their cross-species expression in Saccharomyces cerevisiae. We found that pyrG promoters from the Penicillium species could drive URA3 expression in yeast, and that inefficient cross-species splicing of Penicillium introns might result in weak cross-species expression. Thus, this study demonstrates cross-species expression from Penicillium to yeast, and sheds light on the opportunities and challenges of cross-species expression of fungi expression units and gene clusters in yeast without refactoring for novel natural product discovery. |
---|