Cargando…

Advances on (+)-nootkatone microbial biosynthesis and its related enzymes

(+)-Nootkatone is an important functional sesquiterpene and is comprehensively used in pharmaceutical, cosmetic, agricultural and food flavor industries. However, (+)-nootkatone is accumulated trace amounts in plants, and the demand for industry is mainly met by chemical methods which is harmful to...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiao, Ren, Jing-Nan, Fan, Gang, Zhang, Lu-Lu, Pan, Si-Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788795/
https://www.ncbi.nlm.nih.gov/pubmed/34279658
http://dx.doi.org/10.1093/jimb/kuab046
Descripción
Sumario:(+)-Nootkatone is an important functional sesquiterpene and is comprehensively used in pharmaceutical, cosmetic, agricultural and food flavor industries. However, (+)-nootkatone is accumulated trace amounts in plants, and the demand for industry is mainly met by chemical methods which is harmful to the environment. The oxygen-containing sesquiterpenes prepared using microbial methods can be considered as “natural.” Microbial transformation has the advantages of mild reaction conditions, high efficiency, environmental protection, and strong stereoselectivity, and has become an important method for the production of natural spices. The microbial biosynthesis of (+)-nootkatone from the main precursor (+)-valencene is summarized in this paper. Whole-cell systems of fungi, bacteria, microalgae, and plant cells have been employed. It was described that the enzymes involved in the microbial biosynthesis of (+)-nootkatone, including cytochrome p450 enzymes, laccase, lipoxygenase, and so on. More recently, the related enzymes were expressed in microbial hosts to heterologous produce (+)-nootkatone, such as Escherichia coli, Pichia pastoris, Yarrowia lipolytica, and Saccharomyces cerevisiae. Finally, the development direction of research for realizing industrialization of microbial transformation was summarized and it provided many options for future improved bioprocesses.