Cargando…
Integration of single cell data by disentangled representation learning
Recent developments of single cell RNA-sequencing technologies lead to the exponential growth of single cell sequencing datasets across different conditions. Combining these datasets helps to better understand cellular identity and function. However, it is challenging to integrate different datasets...
Autores principales: | Guo, Tiantian, Chen, Yang, Shi, Minglei, Li, Xiangyu, Zhang, Michael Q |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788944/ https://www.ncbi.nlm.nih.gov/pubmed/34850092 http://dx.doi.org/10.1093/nar/gkab978 |
Ejemplares similares
-
Network embedding-based representation learning for single cell RNA-seq data
por: Li, Xiangyu, et al.
Publicado: (2017) -
Disentangling sRNA-Seq data to study RNA communication between species
por: Bermúdez-Barrientos, José Roberto, et al.
Publicado: (2020) -
Disentangling transcription factor binding site complexity
por: Eggeling, Ralf
Publicado: (2018) -
Integrated analysis of multimodal single-cell data with structural similarity
por: Cao, Yingxin, et al.
Publicado: (2022) -
TIF-Seq2 disentangles overlapping isoforms in complex human transcriptomes
por: Wang, Jingwen, et al.
Publicado: (2020)