Cargando…

Pairing of single mutations yields obligate Cre-type site-specific recombinases

Tyrosine site-specific recombinases (SSRs) represent a versatile genome editing tool with considerable therapeutic potential. Recent developments to engineer and evolve SSRs into heterotetramers to improve target site flexibility signified a critical step towards their broad utility in genome editin...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoersten, Jenna, Ruiz-Gómez, Gloria, Lansing, Felix, Rojo-Romanos, Teresa, Schmitt, Lukas Theo, Sonntag, Jan, Pisabarro, M Teresa, Buchholz, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789052/
https://www.ncbi.nlm.nih.gov/pubmed/34951450
http://dx.doi.org/10.1093/nar/gkab1240
_version_ 1784639681030258688
author Hoersten, Jenna
Ruiz-Gómez, Gloria
Lansing, Felix
Rojo-Romanos, Teresa
Schmitt, Lukas Theo
Sonntag, Jan
Pisabarro, M Teresa
Buchholz, Frank
author_facet Hoersten, Jenna
Ruiz-Gómez, Gloria
Lansing, Felix
Rojo-Romanos, Teresa
Schmitt, Lukas Theo
Sonntag, Jan
Pisabarro, M Teresa
Buchholz, Frank
author_sort Hoersten, Jenna
collection PubMed
description Tyrosine site-specific recombinases (SSRs) represent a versatile genome editing tool with considerable therapeutic potential. Recent developments to engineer and evolve SSRs into heterotetramers to improve target site flexibility signified a critical step towards their broad utility in genome editing. However, SSR monomers can form combinations of different homo- and heterotetramers in cells, increasing their off-target potential. Here, we discover that two paired mutations targeting residues implicated in catalysis lead to simple obligate tyrosine SSR systems, where the presence of all distinct subunits to bind as a heterotetramer is obligatory for catalysis. Therefore, only when the paired mutations are applied as single mutations on each recombinase subunit, the engineered SSRs can efficiently recombine the intended target sequence, while the subunits carrying the point mutations expressed in isolation are inactive. We demonstrate the utility of the obligate SSR system to improve recombination specificity of a designer-recombinase for a therapeutic target in human cells. Furthermore, we show that the mutations render the naturally occurring SSRs, Cre and Vika, obligately heteromeric for catalytic proficiency, providing a straight-forward approach to improve their applied properties. These results facilitate the development of safe and effective therapeutic designer-recombinases and advance our mechanistic understanding of SSR catalysis.
format Online
Article
Text
id pubmed-8789052
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-87890522022-01-26 Pairing of single mutations yields obligate Cre-type site-specific recombinases Hoersten, Jenna Ruiz-Gómez, Gloria Lansing, Felix Rojo-Romanos, Teresa Schmitt, Lukas Theo Sonntag, Jan Pisabarro, M Teresa Buchholz, Frank Nucleic Acids Res Synthetic Biology and Bioengineering Tyrosine site-specific recombinases (SSRs) represent a versatile genome editing tool with considerable therapeutic potential. Recent developments to engineer and evolve SSRs into heterotetramers to improve target site flexibility signified a critical step towards their broad utility in genome editing. However, SSR monomers can form combinations of different homo- and heterotetramers in cells, increasing their off-target potential. Here, we discover that two paired mutations targeting residues implicated in catalysis lead to simple obligate tyrosine SSR systems, where the presence of all distinct subunits to bind as a heterotetramer is obligatory for catalysis. Therefore, only when the paired mutations are applied as single mutations on each recombinase subunit, the engineered SSRs can efficiently recombine the intended target sequence, while the subunits carrying the point mutations expressed in isolation are inactive. We demonstrate the utility of the obligate SSR system to improve recombination specificity of a designer-recombinase for a therapeutic target in human cells. Furthermore, we show that the mutations render the naturally occurring SSRs, Cre and Vika, obligately heteromeric for catalytic proficiency, providing a straight-forward approach to improve their applied properties. These results facilitate the development of safe and effective therapeutic designer-recombinases and advance our mechanistic understanding of SSR catalysis. Oxford University Press 2021-12-24 /pmc/articles/PMC8789052/ /pubmed/34951450 http://dx.doi.org/10.1093/nar/gkab1240 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Synthetic Biology and Bioengineering
Hoersten, Jenna
Ruiz-Gómez, Gloria
Lansing, Felix
Rojo-Romanos, Teresa
Schmitt, Lukas Theo
Sonntag, Jan
Pisabarro, M Teresa
Buchholz, Frank
Pairing of single mutations yields obligate Cre-type site-specific recombinases
title Pairing of single mutations yields obligate Cre-type site-specific recombinases
title_full Pairing of single mutations yields obligate Cre-type site-specific recombinases
title_fullStr Pairing of single mutations yields obligate Cre-type site-specific recombinases
title_full_unstemmed Pairing of single mutations yields obligate Cre-type site-specific recombinases
title_short Pairing of single mutations yields obligate Cre-type site-specific recombinases
title_sort pairing of single mutations yields obligate cre-type site-specific recombinases
topic Synthetic Biology and Bioengineering
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789052/
https://www.ncbi.nlm.nih.gov/pubmed/34951450
http://dx.doi.org/10.1093/nar/gkab1240
work_keys_str_mv AT hoerstenjenna pairingofsinglemutationsyieldsobligatecretypesitespecificrecombinases
AT ruizgomezgloria pairingofsinglemutationsyieldsobligatecretypesitespecificrecombinases
AT lansingfelix pairingofsinglemutationsyieldsobligatecretypesitespecificrecombinases
AT rojoromanosteresa pairingofsinglemutationsyieldsobligatecretypesitespecificrecombinases
AT schmittlukastheo pairingofsinglemutationsyieldsobligatecretypesitespecificrecombinases
AT sonntagjan pairingofsinglemutationsyieldsobligatecretypesitespecificrecombinases
AT pisabarromteresa pairingofsinglemutationsyieldsobligatecretypesitespecificrecombinases
AT buchholzfrank pairingofsinglemutationsyieldsobligatecretypesitespecificrecombinases