Cargando…
Empowering differential networks using Bayesian analysis
Differential networks (DN) are important tools for modeling the changes in conditional dependencies between multiple samples. A Bayesian approach for estimating DNs, from the classical viewpoint, is introduced with a computationally efficient threshold selection for graphical model determination. Th...
Autores principales: | Smith, Jarod, Arashi, Mohammad, Bekker, Andriëtte |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789149/ https://www.ncbi.nlm.nih.gov/pubmed/35077451 http://dx.doi.org/10.1371/journal.pone.0261193 |
Ejemplares similares
-
Enhancing wind direction prediction of South Africa wind energy hotspots with Bayesian mixture modeling
por: Rad, Najmeh Nakhaei, et al.
Publicado: (2022) -
Coming Together of Bayesian Inference and Skew Spherical Data
por: Nakhaei Rad, Najmeh, et al.
Publicado: (2022) -
A theoretical framework for Landsat data modeling based on the matrix variate mean-mixture of normal model
por: Naderi, Mehrdad, et al.
Publicado: (2020) -
Evaluating prediction of COVID-19 at provincial level of South Africa: a statistical perspective
por: Arashi, Mohammad, et al.
Publicado: (2021) -
A Synergetic R-Shiny Portal for Modeling and Tracking of COVID-19 Data
por: Salehi, Mahdi, et al.
Publicado: (2021)